1. S. Ai, Y. Du and R. Peng, Traveling waves for a generalized Holling–Tanner predator–prey model, Journal of Differential Equations, 263 (2017) 7782-7814.
  2. C. Lei and Y. Du, Asymptotic profile of the solution to a free boundary problem arising in a shifting climate model, Discrete & Continuous Dynamical Systems-Series B, 22 (2017) 895-911.
  3. L. Wei and Y. Du, Exact singular behavior of positive solutions to nonlinear elliptic equations with a Hardy potential, Journal of Differential Equations, 262 (2017) 3864-3886.
  4. W. Ding, Y. Du and X. Liang, Spreading in space-time periodic media governed by a monostable equation with free boundaries, Part 1: Continuous initial functions, J. Diff. Eqns., 262 (2017) 4988-5021.
  5. Y. Du, L. Wei and L. Zhou, Spreading in a shifting environment modeled by the diffusive logistic equation with a free boundary, Journal of Dynamics and Differential Equations, (2017).
  6. S. Davis, R. Lukeman, T. M. Schaerf and A. J. W. Ward, Familiarity affects collective motion in shoals of guppies (Poecilia reticulata), Royal Society Open Science, 4 (2017) 170312.
  7. C. Raven, R. Shine, M. Greenlees, T. M. Schaerf and A. J. W. Ward, The role of biotic and abiotic cues in stimulating aggregation by larval cane toads (Rhinella marina), Ethology, 123 (2017) 724-735.
  8. J. C. Makinson, T. M. Schaerf, N. Wagner, B. P. Oldroyd and M. Beekman, Collective decision making in the red dwarf honeybee Apis florea: do the bees simply follow the flowers? Insectes Sociaux, 64 (2017) 557-566.
  9. A. J. W. Ward, T. M. Schaerf, J. E. Herbert-Read, L. Morrell, D. J. T. Sumpter and M. M. Webster, Local interactions and global properties of wild, free-ranging stickleback shoals, Royal Society Open Science, 4 (2017) 170043.
  10. T. M. Schaerf, P. W. Dillingham and A. J. W. Ward, The effects of external cues on individual and collective behavior of shoaling fish, Science Advances, 3 (2017) e1603201.
  11. P. N. LoxleyThe two-dimensional Gabor function adapted to natural image statistics: A model of simple-cell receptive fields and sparse structure in images,
    Neural Computation 29 (2017) 2769.
  12. B. Lou, N. Sun and M. Zhou, A diffusive Fisher-KPP equation with free boundaries and time-periodic advections, Calculus of Variations and PDEs 56 (2017), no. 3.
  13. Y. Du, M. Wang and M. Zhou, Semi-wave and spreading speed for the diffusive competition model with a free boundary, J. Math. Pures Appl. (9) 107 (2017) 253-287.
  14. A. Ottazzi and G. Schmalz, Normal forms of para-CR hypersurfaces, Diff. Geom. Appl., 52 (2017) 78–93.
  15. V. Ejov, M. Kolář and G. Schmalz, Rigid embeddings of Sasakian hyperquadrics in , published online first in  J. Geom. Anal. (2017).
  16. N. Boland, T. Kalinowski and F. Rigterink,  A polynomially solvable case of the pooling problem, Journal of Global Optimization, 67 (2017) 621-630.
  17. N. Boland, S. Dey, T. Kalinowski, M. Molinaro and F. Rigterink, Bounding the gap between the McCormick relaxation and the convex hull for bilinear functions, Mathematical Programming, 162 (2017) 523-535.
  18. A. Harris, "An intrinsic approach to stable embedding of normal surface deformations" Methods and Applications of Analysis 24 (2017) 277-292.
  19. K. M. Pavlov, V. I. Punegov, K. S. Morgan, G. Schmalz and D. M. Paganin, Deterministic Bragg Coherent Diffraction Imaging, Scientific Reports 7 (2017) 1132.
  20. V. I. Punegov, K. M. Pavlov, A. V. Karpov and N. N. Faleev. Applications of dynamical theory of X-ray diffraction by perfect crystals to reciprocal space mapping. J. Appl. Cryst. 50 (2017) 1256-1266.
  21. C.-S. Lin and S. Yan, On condensate of solutions for the Chern-Simons-Higgs equation, Annales de l'Institut Henri Poincare 34 (2017) 1329-1354.