## Publications

**Authored books**

**Y. Du**,*Order structure and topological methods in nonlinear partial differential equations. Vol. 1, Maximum principles and applications, Series in Partial Differential Equations and Applications, 2*, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, x+190 pages. ISBN 981-256-624-4, 2006.

**Edited books**

**Y. Du**, Hitoshi Ishii and Wei-Yueh Lin (editors),*Recent Progress in Nonlinear Partial Differential Equations and Viscosity Solutions*, World Scientific Publishing, 372 pages. ISBN 981-283-473-7, 2009.

**Book Chapters**

- M. R. Myerscough, J. R. Edwards and
**T. M. Schaerf**, Models for the recruitment and allocation of honey bee foragers, in*“In Silico*Bees”*,*edited by James Devillers, Taylor and Francis, 2014, pp 67-86. **Y. Du**, Establishment or vanishing: fate of an invasive species based on mathematical models, in "The Balance of Nature and Human Impact", edited by Klaus Rohde, Cambridge University Press, 2013, pp 231-238.**Y. Du**,*Change of environment in model ecosystems: effect of a protection zone in diffusive population models*, in “Recent Progress in Nonlinear Partial Differential Equations and Viscosity Solutions”, edited by Yihong Du, Hitoshi Ishii and Wei-Yueh Lin, World Scientific Publishing, 2009.- C. Macaskill and
**T. M. Schaerf**, Jupiter’s Great Red Spot, in*“*Encyclopedia of Nonlinear Science”, edited by Alwyn Scott, Routledge, 2005, pp 486—488.

**Refereed journal articles**

2018

- X. Zhang and
**Y. Du**, Sharp conditions for the existence of boundary blow-up solutions to the Monge–Ampère equation, Calculus of Variations and Partial Differential Equations, 57 (2018) 30. - W. Bao,
**Y. Du**, Z. Lin and H. Zhu, Free boundary models for mosquito range movement driven by climate warming, Journal of mathematical biology, 76 (2018) 841-875. - C. Lei, H. Nie, W. Dong and
**Y. Du**, Spreading of two competing species governed by a free boundary model in a shifting environment, Journal of Mathematical Analysis and Applications, doi:10.1016/j.jmaa.2018.02.042 (2018). - A. L. Burns,
**T. M. Schaerf**and A. J. W. Ward, Behavioural consistency and group conformity in humbug damselfish, Behaviour, 154 (2018) 1343-1359. - A. J. W. Ward, J. E. Herbert-Read,
**T. M. Schaerf**and F. Seebacher, The physiology of leadership in fish shoals: leaders have lower maximal metabolic rates and lower aerobic scope, Journal of Zoology, doi:10.1111/jzo.12534, (2018). - R. Peng and
**M. Zhou**, Effects of large degenerate advection and boundary conditions on the principal eigenvalue and its eigenfunction of a linear second order elliptic operator, Indiana Univ. Math. J. (2018).

2017

- S. Ai,
**Y. Du**and R. Peng, Traveling waves for a generalized Holling–Tanner predator–prey model, Journal of Differential Equations, 263 (2017) 7782-7814. - C. Lei and
**Y. Du**, Asymptotic profile of the solution to a free boundary problem arising in a shifting climate model, Discrete & Continuous Dynamical Systems-Series B, 22 (2017) 895-911. - L. Wei and
**Y. Du**, Exact singular behavior of positive solutions to nonlinear elliptic equations with a Hardy potential, Journal of Differential Equations, 262 (2017) 3864-3886. - W. Ding,
**Y. Du**and X. Liang, Spreading in space-time periodic media governed by a monostable equation with free boundaries, Part 1: Continuous initial functions, J. Diff. Eqns., 262 (2017) 4988-5021. **Y. Du**, L. Wei and L. Zhou, Spreading in a shifting environment modeled by the diffusive logistic equation with a free boundary, Journal of Dynamics and Differential Equations, (2017).- S. Davis, R. Lukeman,
**T. M. Schaerf**and A. J. W. Ward, Familiarity affects collective motion in shoals of guppies (*Poecilia reticulata*), Royal Society Open Science, 4 (2017) 170312. - C. Raven, R. Shine, M. Greenlees,
**T. M. Schaerf**and A. J. W. Ward, The role of biotic and abiotic cues in stimulating aggregation by larval cane toads (*Rhinella marina*), Ethology, 123 (2017) 724-735. - J. C. Makinson,
**T. M. Schaerf**, N. Wagner, B. P. Oldroyd and M. Beekman, Collective decision making in the red dwarf honeybee*Apis florea*: do the bees simply follow the flowers? Insectes Sociaux, 64 (2017) 557-566. - A. J. W. Ward,
**T. M. Schaerf**, J. E. Herbert-Read, L. Morrell, D. J. T. Sumpter and M. M. Webster, Local interactions and global properties of wild, free-ranging stickleback shoals, Royal Society Open Science, 4 (2017) 170043. **T. M. Schaerf**, P. W. Dillingham and A. J. W. Ward, The effects of external cues on individual and collective behavior of shoaling fish, Science Advances, 3 (2017) e1603201.**P. N. Loxley**,*The two-dimensional Gabor function adapted to natural image statistics: A model of simple-cell receptive fields and sparse structure in images,*

Neural Computation 29 (2017) 2769.- B. Lou, N. Sun and
**M. Zhou**, A diffusive Fisher-KPP equation with free boundaries and time-periodic advections, Calculus of Variations and PDEs 56 (2017), no. 3. **Y. Du**, M. Wang and**M. Zhou**, Semi-wave and spreading speed for the diffusive competition model with a free boundary, J. Math. Pures Appl. (9) 107 (2017) 253-287.- A. Ottazzi and
**G. Schmalz**, Normal forms of para-CR hypersurfaces, Diff. Geom. Appl., 52 (2017) 78–93. - V. Ejov, M. Kolář and
**G. Schmalz**, Rigid embeddings of Sasakian hyperquadrics in , published online first in J. Geom. Anal. (2017). - N. Boland,
**T. Kalinowski**and F. Rigterink, A polynomially solvable case of the pooling problem, Journal of Global Optimization, 67 (2017) 621-630. - N. Boland, S. Dey,
**T. Kalinowski**, M. Molinaro and F. Rigterink, Bounding the gap between the McCormick relaxation and the convex hull for bilinear functions, Mathematical Programming, 162 (2017) 523-535. **A. Harris**, "An intrinsic approach to stable embedding of normal surface deformations"*Methods and Applications of Analysis***24**(2017) 277-292.**K. M. Pavlov,**V. I. Punegov, K. S. Morgan, G. Schmalz and D. M. Paganin, Deterministic Bragg Coherent Diffraction Imaging, Scientific Reports 7 (2017) 1132.- V. I. Punegov,
**K. M. Pavlov**, A. V. Karpov and N. N. Faleev. Applications of dynamical theory of X-ray diffraction by perfect crystals to reciprocal space mapping*.*J. Appl. Cryst. 50 (2017) 1256-1266. - C.-S. Lin and
**S. Yan**, On condensate of solutions for the Chern-Simons-Higgs equation, Annales de l'Institut Henri Poincare 34 (2017) 1329-1354.

2016

- M. Musso, J. Wei and
**S. Yan**, Infinitely many positive solutions for a nonlinear field equation with super-critical growth. Proc. Lond. Math. Soc*.*112 (2016)1–26. - Y. Deng, S. Peng and
**S. Yan**, Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations. J. Differential Equations 260 (2016) 1228–1262. - J. C. Makinson,
**T. M. Schaerf**, A. Rattanawannee, B. P. Oldroyd and M. Beekman, How does a swarm of the giant honeybee*Apis dorsata*reach consensus? A study of the individual behaviour of scout bees, Insectes Sociaux, 63 (2016) 395-406. - M. J. Hansen,
**T. M. Schaerf**, S. J. Simpson and A. J. W. Ward, Group foraging decisions in nutritionally differentiated environments, Functional Ecology, 30 (2016) 1638—1647. - M. J. Hansen,
**T. M. Schaerf**, J Krause and A. J. W. Ward, Crimson spotted rainbowfish (*Melanotaenia duboulayi*) change their spatial position according to nutritional requirement, PLoS One, 11 (2016) e0148334. - M. Beekman, K. Preece and
**T. M. Schaerf**, Dancing for their supper: Do honeybees adjust their recruitment dance in response to the protein content of pollen?, Insectes Sociaux, 63 (2016) 117-126. **Y. Du**, B. Lou and**M. Zhou**, Spreading and vanishing for nonlinear Stefan problems in high space dimensions, J. Elliptic and Parabolic Equations 2 (2016) 297-321.- W. Lei, G. Zhang and
**M. Zhou**, Long time behavior for solutions of the diffusive logistic equation with advection and free boundary, Calculus of Variations and PDEs 55 (2016) 1-34. - X. Chen, B. Lou,
**M. Zhou**and T. Giletti, Long time behavior of solutions of a reaction diffusion equation on unbounded intervals with Robin boundary conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire 33 (2016) 67-92. - A. Ottazzi and
**G. Schmalz**, Singular multicontact structures, J. Math. Anal. Appl., 443 (2016) 1220–1231. - C.-J. Joo, K.-T. Kim and
**G. Schmalz**, On the generalization of Forelli's theorem, Math. Ann., 365 (2016) 1187–1200. - V. Ejov and
**G. Schmalz**, The zero curvature equation for rigid CR-manifolds, Complex Var. Elliptic Equ. 61 (2016) 443-447. - N. Boland,
**T. Kalinowski**and F. Rigterink, New multi-commodity flow formulations for the pooling problem, Journal of Global Optimization, 66 (2016) 669-710. **T. Kalinowski**, U. Leck, C. Reiher and I.T. Roberts, Minimizing the regularity of maximal regular antichains of 2- and 3-sets, Australasian Journal of Combinatorics, 64 (2016) 277-288.- N. Boland, I. Dumitrescu, G. Froyland and
**T. Kalinowski,**Minimum cardinality non-anticipativity constraint sets for multistage stochastic programming, Mathematical Programming, 157 (2016) 69-93. **A. Harris**and G. P. Paternain, Conformal great-circle flows on the 3-sphere,*Proceedings of the American Mathematical Society***1**44 (2016) 1725-1734.- V. I. Punegov, S. I. Kolosov and
**K. M. Pavlov,**Bragg-Laue X-ray dynamical diffraction on perfect and deformed lateral crystalline structures, J. Appl. Cryst. 49 (2016) 1190-1202.

2015

**Y. Du**and P. Polácik, Locally uniform convergence to an equilibrium for nonlinear parabolic equations on RN, Indiana University Mathematics Journal, 64 (2015) 787-824.**Y. Du**, S.-B. Hsu and Y. Lou, Multiple steady-states in phytoplankton population induced by photoinhibition, Journal of Differential Equations, 258 (2015) 2408-2434.**Y. Du**and X. Liang, Pulsating semi-waves in periodic media and spreading speed determined by a free boundary model, Ann. Inst. Henri Poincare Anal. Non Lineaire, 32 (2015) 279-305.**Y. Du**and B. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc., 17 (2015) 2673-2724.- D. Cao, S. Peng and
**S. Yan**, Planar vortex patch problem in incompressible steady flow,*Adv. Math.,*270 (2015) 263–301. **Y. Du**and Z. Guo, Finite Morse index solutions of weighted elliptic equations and the critical exponents.,*Calc. Var. Partial Differential Equations*, 54 (2015) 3161–3181.**Y. Du**and L. Wei, Lei Boundary behavior of positive solutions to nonlinear elliptic equations with Hardy potential.*J. Lond. Math. Soc.*91 (2015) 731–749.- M. J. Hansen,
**T. M. Schaerf**and A. J. W. Ward, The influence of nutritional state on individual and group movement behaviour in shoals of crimson-spotted rainbowfish (*Melanotaenia duboulayi*), Behavioral Ecology and Sociobiology, 69 (2015) 1713-1722. - M. J. Hansen,
**T. M. Schaerf**and A. J. W. Ward, The effect of hunger on the exploratory behaviour of shoals of mosquitofish*Gambusia holbrooki*, Behaviour, 152 (2015) 1659-1677. - J. R. Christie,
**T. M. Schaerf**and M. Beekman, Selection against heteroplasmy explains the evolution of uniparental inheritance of mitochondria, PLoS Genetics, 11 (2015) e1005112. - M. Beekman, J. C. Makinson, M. J. Couvillon, K. Preece and
**T. M. Schaerf**, Honeybee linguistics – a comparative analysis of the waggle dance among species of*Apis*, Frontiers in Ecology and Evolution, 3 (2015) doi:10.3389/fevo.2015.00011. - H. Gu, B. Lou and
**M. Zhou**, Long time behavior of solutions of Fisher-KPP equation with advection and free boundaries, J. Funct. Anal., 269 (2015) 1714–1768. - T. Giletti, L. Monsaingeo and
**M. Zhou**, A KPP road-field system with spatially periodic exchange terms, Nonlinear Anal. 128 (2015) 273–302. **Y. Du**, B. Lou and**M. Zhou**, Nonlinear diffusion problems with free boundaries: convergence, transition speed and zero number arguments, SIAM J. Math. Anal., 47 (2015) 3555–3584.**Y. Du**, H. Matsuzawa and**M. Zhou**, Spreading speed and profile for nonlinear Stefan problems in high space dimensions, J. Math. Pures Appl., 103 (2015) 741–787.- V. Ejov and
**G. Schmalz**, Explicit description of spherical rigid hypersurfaces in , Complex Analysis and its Synergies, 1-2 (2015). **T. Kalinowski**, D. Matsypura and M.W.P. Savelsbergh, Incremental network design with maximum flows, European Journal of Operational Research, 242 (2015) 51-62.- Y. I. Nesterets, T. E. Gureyev, S. C. Mayo, A. W. Stevenson, D. Thompson, J. M. C. Brown, M. J. Kitchen,
**K. M. Pavlov**, D. Lockie and G. Tromba, A feasibility study of X-ray phase-contrast mammographic tomography at the Imaging and Medical beamline of the Australian Synchrotron., J. Synchr. Rad. 22 (2015) 1509-1523. - H. Baues and
**B.Bleile**, The third homotopy group as a π₁-module, Applicable Algebra in Engineering, Communication and Computing, 26 (2015) 165-189. - Y. Deng, C.-S. Lin and
**S. Yan**, On the prescribed scalar curvature problem in , local uniqueness and periodicity, J. Math. Pures Appl. 104 (2015) 1013-1044. - P. Álvarez-Caudevilla,
**Y. Du**and R. Peng, Qualitative analysis of a cooperative reaction-diffusion system in a spatiotemporally degenerate environment, SIAM Journal on Mathematical Analysis, 46 (2015) 499-531.

2014

**Y. Du**, H. Matano and K. Wang, Regularity and asymptotic behavior of nonlinear Stefan problems, Arch. Rational Mech. Anal., 212 (2014) 957-1010.**Y. Du**, Z. Guo and K. Wang, Monotonicity formula and*ε*-regularity of stable solutions to supercritical problems and applications to finite Morse index solutions.*Calc. Var. Partial Differential Equations*50 (2014) 615–638.**Y. Du**and Zhigui Lin, The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor, Discrete Cont. Dyn. Syst.-B, 19 (2014) 3105-3132.- J. C. Makinson,
**T. M. Schaerf**, A. Rattanawanne, B. P. Oldroyd and M. Beekman, Consensus building in the giant Asian honeybee,*Apis dorsata*, swarms on the move, Animal Behaviour, 93 (2014) 191-199. - J. Cai, B. Lou and
**M. Zhou**, Asymptotic behavior of solutions of a reaction diffusion equation with free boundary conditions, J. Dynam. Differential Equations 26 (2014) 1007–1028. **Y. Du**, H. Matsuzawa and**M. Zhou**, Sharp estimate of the spreading speed determined by nonlinear free boundary problems, SIAM J. Math. Anal. 46 (2014) 375–396.- F. de Hoog,
**G. Schmalz**and T. E. Gureyev, An uncertainty inequality, Appl. Math. Lett. 38 (2014) 84-86. - T. Gureyev, Y. Nesterets, F. de Hoog,
**G. Schmalz**, S. C. Mayo, S. Mohammadi and G. Tromba, Duality between noise and spatial resolution in linear systems, Optics Express, 22 (2014) 9087-9094. - V. Ejov and
**G.Schmalz**, Spherical rigid hypersurfaces in , Differential Geom. Appl. 33 (2014) 267-271. - N. Boland,
**T. Kalinowski**, H. Waterer and L. Zheng, Scheduling arc maintenance jobs in a network to maximize total flow over time, Discrete Applied Mathematics, 163 (2014) 34-52. - M. Baxter, T. Elgindy, A.T. Ernst,
**T. Kalinowski**and M.W.P. Savelsbergh, Incremental network design with shortest paths, European Journal of Operational Research, 238 (2014) 675-684. **A. Harris**and M. Kolar, On hyperbolicity of domains with strictly pseudoconvex ends, Canadian Journal of Mathematics, 66 (2014) 197-204.- P. Vagovic, L. Sveda, A. Cecilia, E. Hamann, D. Pelliccia, E. N. Gimenez, D. Korytar,
**K. M. Pavlov**, Z. Zaprazny, M. Zuber, T. Koenig, M. Olbinado, W. Yashiro, A. Momose, M. Fiederle and T. Baumbach, X-ray Bragg Magnifier Microscope as a linear shift invariant imaging system: image formation and phase retrieval, Optics Express 22 (2014) 21508-21520. - T. E. Gureyev, S. C. Mayo, Ya I. Nesterets, S. Mohammadi, D. Lockie, R. H. Menk, F. Arfelli,
**K. M. Pavlov**, M. J. Kitchen, F. Zanconati, C. Dullin and G Tromba, Investigation of the imaging quality of synchrotron-based phase-contrast mammographic tomography, J. Phys. D: Appl. Phys., 47 (2014) 365401. - V. I. Punegov, S. I. Kolosov and
**K.M. Pavlov**, Darwin's approach to X-ray diffraction on lateral crystalline structures, Acta Cryst. A, 70 (2014) 64-71.

2013

**T. M. Schaerf**, J. C. Makinson, M. R. Myerscough and M. Beekman, Do small swarms have an advantage when house hunting? – The effect of swarm size on nest-site selection by Apis mellifera, Journal of the Royal Society Interface, 10 (2013) 20130533.- J. E. Herbert-Read, S. Krause, L. Morrel,
**T. M. Schaerf,**J. Krause and A. J. W. Ward, The role of individuality in collective group movement, Proceedings of the Royal Society B, 280 (2013) 20122564. **P. N. Loxley**and B. T. Nadiga, Bistability and Hysteresis of Maximum-Entropy States in Decaying Two-Dimensional Turbulence, Physics of Fluids 25 (2013) 015113.**T. Kalinowski**, U. Leck and I.T. Roberts, Maximal antichains of minimum size, Electronic Journal of Combinatorics, 20 (2013) 1-14.- J.-C. Joo, K.-T. Kim and
**G. Schmalz**, A generalization of Forelli's theorem. Math. Ann. 355 (2013) 1171-1176. - C.-S. Lin and
**S. Yan**, Bubbling solutions for the SU(3) Chern-Simons model on a torus, Comm. Pure Appl. Math., 66 (2013) 991-1027. - C.-S. Lin and
**S. Yan**, Existence of bubbling solutions for Chern-Simons model on a torus, Arch. Ration. Mech. Anal. 207 (2013) 353-392. **S. Yan**and J. Yang, Infinitely many solutions for an elliptic problem involving critical Sobolev and Hardy-Sobolev exponents, Calc. Var. Partial Differential Equations 48 (2013) 587-610.- D. Cao, S. Peng and
**S. Yan**, On the Webster scalar curvature problem on the CR sphere with a cylindrical-type symmetry, J. Geom. Anal. 23 (2013), 1674-1702. - J. Wei and
**S. Yan**, Infinitely many nonradial solutions for the Henon equation with critical growth, Rev. Mat. Iberoam., 29 (2013) 997-1020. **Y. Du**, Z. Guo and R. Peng, A diffusive logistic model with a free boundary in time-periodic environment, J. Funct. Anal., 265 (2013), 2089-2142.- E. N. Dancer,
**Y. Du**and M. Efendiev, Quasilinear elliptic equations on half- and quarter-spaces, Adv. Nonlinear Studies (special issue dedicated to Klaus Schmitt), 13 (2013) 115-136. **Y. Du**and Z. M. Guo, Finite Morse index solutions and asymptotics of weighted nonlinear elliptic equations, Adv. Diff. Eqns., 18 (2013) 737-768.**Y. Du**and R. Peng, Sharp spatiotemporal patterns in the diffusive time-periodic logistic equation, J. Diff. Eqns., 254 (2013) 3794-3816.

2012

- R. M. Brito,
**T. M. Schaerf**, M. R. Myerscough, T. A. Heard and B. P. Oldroyd, Brood comb construction by the stingless bees*Tetragonula hockingsi*and*Tetragonula carbonaria*, Swarm Intelligence, 6 (2012) 151-176. **T. M. Schaerf**and C. Macaskill, On contour crossings in contour-advective simulations – part 2 – analysis of crossing errors and methods for their prevention, Journal of Computational Physics, 231 (2012) 481-504.**T. M. Schaerf**and C. Macaskill, On contour crossings in contour-advective simulations – part 1 – alogirthm for detection and quantification, Journal of Computational Physics, 231 (2012) 465-480.- T. W. Baillie, T. E. Gureyev, J. A. Schmalz and
**K. M. Pavlov,**Phase-contrast X-ray tomography using Teague’s method, Optics Express 20 (2012) 16913-16925. - G. Bunting,
**Y. Du**and K. Krakowski, Spreading speed revisited: Analysis of a free boundary model, Networks and Heterogeneous Media (special issue dedicated to H. Matano), 7 (2012) 583-603. **Y. Du**and R. Peng, The periodic logistic equation with spatial and temporal degeneracies, Trans. Amer. Math. Soc., 364 (2012) 6039-6070.**Y. Du**and Z. M. Guo, The Stefan problem for the Fisher-KPP equation, J. Diff. Eqns., 253 (2012) 996-1035.**Y. Du**and L. Ma, A Liouville theorem for conformal Gaussian curvature type equations in , Calculus of Variations and PDEs, 43 (2012) 485-505.- D. Cao, S. Peng and
**S. Yan**, Infinitely many solutions for p-Laplacian equation involving critical Sobolev growth. J. Funct. Anal. 262 (2012) 2861-2902. - W. Chen, J. Wei and
**S. Yan**, Infinitely many solutions for the Schrödinger equations in with critical growth. J. Differential Equations 252 (2012) 2425-2447. **G. Schmalz**and J. Slovak, Free CR distributions. Cent. Eur. J. Math. 10 (2012) 1896-1913.

2011

- J. E. Herbert-Read, A. Perna, R. Mann,
**T. M. Schaerf**, D. J. T. Sumpter and A. J. W. Ward, Inferring the rules of interaction of shoaling fish, Proceedings of the National Academy of Sciences, 108 (2011) 18726-18731. **T. M. Schaerf,**M. R. Myerscough, J. C. Makinson and M. Beekman, Inaccurate and unverified information in decision making – a model for the nest site selection process of Apis florea, Animal Behaviour, 82 (2011) 995-1013.- K. Diwold,
**T. M. Schaerf**, M. R. Myerscough, M. Middendorf and M. Beekman, Deciding on the wing: in-flight decision making and search space sampling in the red dwarf honeybee A. florea, Swarm Intelligence, 5 (2011) 121-141. - J. C. Makinson, B. P. Oldroyd,
**T. M. Schaerf,**W. Wattanachaiyingcharoen and M. Beekman, Moving home: nest-site selection in the red dwarf honeybee (Apis florea), Behavioral Ecology and Sociobiology, 65 (2011) 945—958. **P. N. Loxley**, L. M. A. Bettencourt, and G. T. Kenyon, Ultra-Fast detection of salient contours through horizontal connections in the primary visual cortex,

Europhysics Letters 93 (2011) 64001.**T. Kalinowski**, A Minimum Cost Flow Formulation for Approximated MLC Segmentation, Networks, 57 (2011) 135-140.**J. A. Schmalz,**T. E. Gureyev, D. M. Paganin and**K.M. Pavlov**. Phase retrieval using radiation and matter wave fields: Validity of Teague's method for solution of the transport of intensity equation, Physical Review A 84(2011) 023808.**K. M. Pavlov,**D. M. Paganin, D. J. Vine,**J. A. Schmalz,**Y. Suzuki, K. Uesugi, A. Takeuchi, N. Yagi, A. Kharchenko, G. Blaj, J. Jakubek, M. Altissimo and J. N. Clark. Quantized hard-x-ray phase vortices nucleated by aberrated nanolenses. Physical Review A 83 (2011) 013813.- S. G. Podorov, A. I. Bishop, D .M. Paganin and
**K. M. Pavlov**, Mask-assisted deterministic phase–amplitude retrieval from a single far-field intensity diffraction pattern: two experimental proofs of principle using visible light, Ultramicroscopy, 111 (2011)782–787. - M. J. Kitchen, D. M. Paganin, K. Uesugi, B. J. Allison, R. A. Lewis, S. B. Hooper and
**K.M. Pavlov**, Phase contrast image segmentation using a Laue analyser, Phys. Med. Biol., 56 (2011) 515-534. **Y. Du**and L. Mei, On a nonlocal reaction-diffusion-advection equation modeling phytoplankton, Nonlinearity, 24 (2011) 319-349.**Y. Du**and Z. Guo, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary II, J. Diff. Eqns., 250 (2011) 4336-4366.- J. Wei and
**S. Yan**, Infinitely many positive solutions for an elliptic problem with critical or supercritical growth. J. Math. Pures Appl. 96 (2011) 307-333. - D. Cao and
**S. Yan**, Infinitely many solutions for an elliptic Neumann problem involving critical Sobolev growth. J. Differential Equations 251 (2011) 1389-1414. - L. Wang, J. Wei and
**S. Yan**, On Lin-Ni's conjecture in convex domains. Proc. Lond. Math. Soc. 102 (2011) 1099-1126. - V. Ezhov, B. McLaughlin and
**G. Schmalz**, From Cartan to Tanaka: getting real in the complex world, Notices Amer. Math. Soc., 58 (2011) 20-27. - H.-J. Baues and
**B. Bleile**, Self-maps of the product of two spheres fixing the diagonal, Topology Appl. 158 (2011) 2198-2204. **A. Harris**and M. Kolar, On infinitesimal deformations of the regular part of a complex cone singularity, Kyushu J. Math., 65 (2011) 25-38.

2010

- M. J. Kitchen, D. M. Paganin, K. Uesugi, B. J. Allison, R. A. Lewis, S. B. Hooper and
**K.M. Pavlov**. X-ray phase, absorption and scatter retrieval using two or more phase contrast images*,*Optics Express 18 (2010) 19994-20012. - D. Cao, S. Peng and
**S. Yan**, Multiplicity of solutions for the plasma problem in two dimensions. Adv. Math. 225 (2010) 2741-2785. - F. Cirstea and
**Y. Du**,*Isolated singularities for weighted quasilinear elliptic equations,*J. Functional Anal., 259 (2010) 174-202. **Y. Du**and Z. Lin,*Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary,*SIAM J. Math. Anal., 42 (2010) 377-405.**Y. Du**and Hiroshi Matano,*Convergence and sharp thresholds for propagation in nonlinear diffusion problems,*J. European Math. Soc., 12 (2010) 279-312.- J. Wei and
**S. Yan**, On a stronger Lazer-McKenna conjecture for Ambrosetti-Prodi type problems, Ann. Sc. Norm. Super. Pisa Cl. Sci. 9 (2010) 423-457. - C.-S. Lin and
**S. Yan**, Bubbling solutions for relativistic abelian Chern-Simons model on a torus, Comm. Math. Phys., 297 (2010) 733-758. - D. Cao and
**S. Yan**, Infinitely many solutions for an elliptic problem involving critical Sobolev growth and Hardy potential, Calc. Var. Partial Differential Equations, 38 (2010) 471-501. - L. Wang, J. Wei and
**S. Yan**, A Neumann problem with critical exponent in nonconvex domains and Lin-Ni's conjecture, Trans. Amer. Math. Soc., 362 (2010), 4581-4615. - J. Wei and
**S. Yan**, Infinitely many solutions for the prescribed scalar curvature problem on , J. Funct. Anal, 258 (2010) 3048-3081. - J. Wei and
**S. Yan**, Infinitely many positive solutions for the nonlinear Schrödinger equations in , Calc. Var. Partial Differential Equations 37 (2010) 423-439. **J. Schmalz**,**G. Schmalz**, T. Gureyev, and**K. Pavlov**, On the derivation of the Greens function for the Helmholtz equation using generalized functions, Am. J. Phys., 78 (2010) 181-186.**B. Bleile**, Poincare duality pairs of dimension three, Forum Math., 22 (2010) 277-301.- C. Albert,
**B. Bleile**and J. Frohlich, Batalin-Vilkovisky integrals in finite dimensions, J. Math. Phys., 51 (2010) 015213.

2009

**P. N. Loxley**and P. A. Robinson, Soliton Model of Competitive Neural Dynamics during Binocular Rivalry, Physical Review Letters 102 (2009) 258701.- H. Henke, P. A. Robinson, P. M. Drysdale and
**P. N. Loxley**, Spatiotemporal dynamics of pattern formation in the primary visual cortex and hallucinations,

Biological Cybernetics, 101 (2009) 3. - M. Grüttmüller, S. Hartmann,
**T. Kalinowski,**U. Leck and I.T. Roberts, Maximal Flat Antichains of Minimum Weight, Electronic Journal of Combinatorics, 16 (2009) #R69. **T. Kalinowski,**A Dual of the Rectangle-Segmentation Problem for Binary Matrices, Electronic Journal of Combinatorics, 16 (2009) #R89.- W. X. Tang, D. E. Jesson,
**K. M. Pavlov**, M. J. Morgan and B. F. Usher, Ga droplet morphology on GaAs (001) studied by Lloyd’s Mirror photo-emission electron microscopy, J. Phys.: Condens. Matter, 21 (2009) 314022. - D. J. Vine, D. M. Paganin,
**K. M. Pavlov,**K. Uesugi, A. Takeuchi, Y. Suzuki, N. Yagi, T. Kämpfe, E.-B. Kley, E. Förster. Deterministic Green’s function retrieval using hard X-rays, Phys. Rev. Lett., 102 (2009) 043901. **Y. Du**and Y. Yamada, On the long-time limit of positive solutions to the degenerate logistic equation, Discrete and Continuous Dynamical Systems A, 25 (2009) 123-132.**Y. Du,**R. Peng and M. Wang, Effect of a protection zone in the diffusive Leslie predator-prey model, J. Diff. Eqns., 246 (2009) 3932-3956.**Y. Du**and Z. M. Guo, Positive solutions of an elliptic equation with negative exponent: stability and critical power, J. Diff. Eqns., 246 (2009) 2387-2414.- D. Cao, S. Peng and
**S. Yan**, Asymptotic behaviour of ground state solutions for the Henon equation, IMA J. Appl. Math., 74 (2009) 468-480. - E. N. Dancer, D. Hilhorst and
**S. Yan**, Peak solutions for the Dirichlet problem of an elliptic system, Discrete Contin. Dyn. Syst. 3 (2009) 731-761. - K. T. Kim, E. Poletsky and
**G. Schmalz,**Functions holomorphic along holomorphic vector fields, Journal of Geometric Analysis, 19 (2009) 655-666. - V. Ejov, M. Kolar and
**G. Schmalz**, Degenerate hypersurfaces with a two-parametric family of automorphisms, Complex Variables and Elliptic Equations, 54 (2009) 283-291.

2008

**P. N. Loxley**, Rate of magnetization reversal due to nucleation of soliton-antisoliton pairs at point-like defects, Physical Review B, 77 (2008) 144424.- M. J. Kitchen,
**K. M. Pavlov,**S. B. Hooper, D. J. Vine, K. K. W. Siu, M. J. Wallace, M. L. L. Siew, N. Yagi, K. Uesugi and R.A. Lewis, Simultaneous acquisition of dual analyser-based phase contrast X-ray images for small animal imaging, Eur J. Radiol, 68S (2008) S49-S53. **Y. Du**and S.-B. Hsu, Concentration phenomena in a nonlocal quasiliear problem modelling phytoplankton I: Existence, SIAM J. Math. Anal., 40 (2008) 1419-1440.**Y. Du**and S.-B. Hsu, Concentration phenomena in a nonlocal quasiliear problem modelling phytoplankton II: Limiting profile, SIAM J. Math. Anal., 40 (2008) 1441-1470.**Y. Du,**P. Y. H. Pang and M. Wang, Qualitative analysis of a predator-prey model with stage structure for the predator, SIAM J. Appl. Math., 69 (2008) 596-620.**Y. Du**and X. Liang, A diffusive competition model with a protection zone, J. Diff. Eqns., 244 (2008) 61-86.**Y. Du**, The heterogeneous Allen-Cahn equation in a ball: solutions with layers and spikes, J. Diff. Eqns., 244 (2008) 117-169.**Y. Du**, Z. Liu, A. Pistoia and**S. Yan**, Sign changing solutions with clustered layers near the origin for singularly perturbed semilinear elliptic problems on a ball, Methods and Applications of Analysis (special issue dedicated to N.S. Trudinger), 15 (2008) 137-148.**A. Harris**and M. Kolar, A Remark on cohomology with supports in the complement of a cone singularity, RIMS Kokyuroku, 1610 (2008) 32-37.**A. Harris**and G. Paternain, Dynamically convex Finsler metrics and J-holomorphic embedding of asymptotic cylinders, Ann. Global Anal and Geom., 34 (2008) 115-134.**A. Harris**and K. Wysocki, Branch-structure of J-holomorphic curves near periodic orbits of a contact manifold, Trans. Amer. Math. Soc., 360 (2008) 2131-2152.- V. Beloshapka, V. Ejov and
**G. Schmalz**, Holomorphic classification of 4-dimensional surfaces in C3, Izv. Ross. Akad. Nauk Ser. Mat., 72 (2008) 3-18. - V. Ejov,
**G. Schmalz**and A. Spiro, CR-manifolds of codimension two of parabolic type, Indiana University Mathematics Journal, 57 (2008) 309-342. - C.-K. Han, J.-W. Oh and
**G. Schmalz**, Symmetry algebra for multi-contact structures given by 2n vector fields on , Mathematische Annalen, 341 (2008) 529-542. - D. Cao, E. S. Noussair and
**S. Yan**, Multiscale-bump standing waves with a critical frequency for nonlinear Schrödinger equations, Trans. Amer. Math. Soc., 360 (2008) 3813-3837. - E. N. Dancer and
**S. Yan,**The Lazer-McKenna conjecture and a free boundary problem in two dimensions, Journal of the London Mathematical Society, 78 (2008) 639-662. - E. N. Dancer and
**S. Yan**, On the Lazer-McKenna conjecture involving critical and supercritical exponents, Methods and Applications of Analysis, 15 (2008) 97-120. - H. J. Baues and
**B. Bleile,**Poincare duality complexes in dimension four, Algebr. Geom. Topol., 8 (2008) 2355-2389.