## ORIGINAL PAPER

W. Bartels · B. S. Law · F. Geiser

# Daily torpor and energetics in a tropical mammal, the northern blossom-bat *Macroglossus minimus* (Megachiroptera)

Accepted: 22 September 1997

Abstract Little is known about torpor in the tropics or torpor in megachiropteran species. We investigated thermoregulation, energetics and patterns of torpor in the northern blossom-bat *Macroglossus minimus* (16 g) to test whether physiological variables may explain why its range is limited to tropical regions. Normothermic bats showed a large variation in body temperature  $(T_{\rm b})$ (33 to 37 °C) over a wide range of ambient temperatures  $(T_{a}s)$  and a relatively low basal metabolic rate (1.29 ml  $O_2 g^{-1} h^{-1}$ ). Bats entered torpor frequently in the laboratory at T<sub>a</sub>s between 14 and 25 °C. Entry into torpor always occurred when lights were switched on in the morning, independent of  $T_a$ . MRs during torpor were reduced to about 20–40% of normothermic bats and  $T_{\rm b}s$ were regulated at a minimum of  $23.1 \pm 1.4$  °C. The duration of torpor bouts increased with decreasing  $T_a$  in non-thermoregulating bats, but generally terminated after 8 h in thermoregulating torpid bats. Both the mean minimum  $T_{\rm b}$  and MR of torpid *M. minimus* were higher than that predicted for a 16-g daily heterotherm and the  $T_{\rm b}$  was also about 5 °C higher than that of the common blossom-bat Syconycteris australis, which has a more subtropical distribution. These observations suggest that variables associated with torpor are affected by  $T_{\rm a}$  and that the restriction to tropical areas in M. minimus to some extent may be due to their ability to enter only very shallow daily torpor.

W. Bartels · F. Geiser (⊠)
Zoology, School of Biological Sciences, University of New England, Armidale, New South Wales 2351, Australia, Tel.: +61-2 6773-2868, Fax: +61-2 6773-3814, e-mail: fgeiser@metz.une.edu.au

B.S. Law CRC for Tropical Rainforest Ecology and Management, CSIRO Tropical Forest Research Centre, Division of Wildlife and Ecology, P.O. Box 780, Atherton, Queensland 4883, Australia **Key words** Daily energy expenditure · Daily torpor · Megachiroptera Thermoregulation · Tropics

**Abbreviations** ADMR average daily metabolic rate  $\cdot$  BMR basal metabolic rate  $\cdot$  MR metabolic rate  $\cdot$  RMR resting metabolic rate  $\cdot$  TMR metabolic rate during torpor  $\cdot$  T<sub>a</sub> air temperature  $\cdot$  T<sub>b</sub> body temperature  $\cdot$  TNZ thermal neutral zone  $\cdot$  VO<sub>2</sub> rate of oxygen consumption

#### Introduction

Many small insectivorous bats of the suborder Microchiroptera from temperate and cool climates use torpor to conserve energy (Lyman 1982). When exposed to low ambient temperatures ( $T_a$ ), bats lose heat rapidly due to their relatively large surface area. When these conditions are coupled with periods of food scarcity they cannot meet the energy requirements of sustaining a constant high body temperature ( $T_b$ ) and energy-expensive flight because of very limited internal energy stores. The ability to enter torpor allows bats to survive adverse conditions, because daily energy expenditure can be reduced substantially by lowering their  $T_b$  and metabolic rate (MR) (Hock 1951; Thomas 1995; Geiser and Ruf 1995).

In contrast, bats of the suborder Megachiroptera were in the past believed to be strictly homeothermic (Ransome 1990). Because most of them are large and are restricted to tropical and sub-tropical areas where seasonal changes of food availability are less pronounced than in temperate climates, it was surmised that there was no need to employ torpor. However, more recent studies on small (<20 g) fruit and blossom-bats (Bartholomew et al. 1970; Kulzer and Storf 1980; McNab and Bonaccorso 1995; Coburn and Geiser 1996; Geiser et al. 1996) have shown that some small megachiropteran species are indeed heterothermic.

The most detailed measurements of physiological variables in a heterothermic megachiropteran are available for the common blossom-bat Syconycteris australis (17 g) of Australia (Geiser et al. 1996). This species entered daily torpor readily, allowed  $T_{\rm b}$  to fall below 20 °C and showed a substantial reduction of MR. The distribution range of S. australis extends much further south than that of other small Australian megachiropterans bordering on areas with a temperate climate (Law 1994). One of the reasons for this southerly distribution may be due to their effective use of torpor (Geiser et al. 1996). In contrast, the northern blossom-bat Macroglossus min*imus* (syn. *M. lagochilus*) (14–18 g), which is the only other blossom-bat species found in Australia, is restricted to the tropics (McKean et al. 1995). There is some evidence that M. minimus from New Guinea is also heterothermic (McNab and Bonaccorso 1995), but limited quantitative data on physiological variables have been reported.

The purpose of the present study was to quantify physiological variables of both torpid and normothermic M. minimus. We tested whether the different distributions of the two Australian blossom-bats can be explained by differences in the frequency of torpor or differences in physiological variables associated with torpor.

#### **Materials and methods**

Six *M. minimus* (three males, three females) were captured using mist nets set among flowering mangroves (*Sonneratia alba*) near the Cairns Port on 8 September 1996. After capture bats were fed and flown on the same day to the University of New England, Armidale. Upon arrival the bats weighed  $14.0 \pm 0.8$  g, and were housed in a room (2.2 m × 3.3 m × 3.0 m) containing leaves and branches, and plastic mesh for roosting, and ample room for flight. Bats were maintained throughout the experiment at a  $T_a$  of  $22 \pm 1$  °C with a photoperiod of LD 12:12, similar to the natural photoperiod at the time of capture. Lights were on from 0600 to 1800 hours.

The bats were fed a blended mixture of 500 ml apple juice, two bananas, 150 g raw sugar, 150 g 'Glucodin', and 120 g 'Infasoy'. The mixture was frozen and each day one 75-ml portion was defrosted and diluted with an equal volume of water. The food was then placed into six 24-ml plastic feeders situated in positions accessible to the bats. Each day before feeding, the feeders were removed, washed and soaked in Milton antibacterial solution to prevent the growth of microorganisms. Water was available ad libitum in bird feeders. The animals were hand fed for 2 days after arrival in Armidale until their body mass increased and they learned to feed for themselves.

 $T_{\rm b}$  was measured with implanted transmitters. Before implantation, wax-coated, temperature-sensitive transmitters (Minimitter Model X-M, accuracy  $\pm 0.1$  °C) were calibrated to the nearest 0.1 °C against a precision mercury thermometer in a water bath between 5 and 40 °C. The transmitters weighed approximately 1.2 g and were implanted intraperitoneally under Forthane anaesthesia. The animals were allowed 10 days to recover from the surgery before experiments were conducted.

MR was measured as the rate of oxygen consumption ( $\dot{V}O_2$ ). Bats were placed individually into 0.75-1 respirometry chambers, fitted with plastic mesh for roosting, situated within a temperaturecontrolled cabinet ( $\pm 0.5$  °C). Three animal channels and one reference channel were scanned with solenoid valves. Each channel was read for 3 min in sequence (i.e. the MR of each animal was measured every 12 min). The flow rate was controlled with rotameters at about 300 ml min<sup>-1</sup> and flow rates were measured with Omega FMA-5606 mass flowmeters. The O<sub>2</sub> content leaving the animal chambers was measured in sequence with an Ametek Applied Electrochemistry S-3A O<sub>2</sub> analyser fitted with a high resolution output board (80335SE).

The  $T_a$  inside the respirometer was measured to the nearest 0.1 °C using a digital thermocouple thermometer (Omega DP116). The transmitter signal for  $T_b$  measurements was received by a ferrite rod antenna, transformed to a square-wave signal after subtraction of background noise and multiplexed to an AM receiver.

Analog outputs from the flowmeter,  $O_2$  analyser, digital thermometer, and receiver were interfaced to a personal computer via a 14-bit A/D card. The software for data acquisition was written by B. Lovegrove, T. Ruf, and G. Körtner.

The  $T_b$  and MR of bats were measured for approximately 22 h beginning in late afternoon. An initial measurement of MR was taken on bats without transmitters to determine whether or not they entered torpor. Food or water were not available to the animals while in the respirometry chamber. Each animal was weighed before and after being measured and a linear decrease in body mass was assumed for calculations of mass-specific MR according to Eq. 3a of Withers (1977).

The resting metabolic rate (RMR) of normothermic bats and MR during torpor (TMR) were measured at  $T_{as}$  of 14–25 °C. RMR values were determined by calculating the mean of the three lowest consecutive  $\dot{V}O_2$  values of normothermic animals (over 36 min) after the animals had been in the chambers for 1–2 h. The mean of the corresponding  $T_a$  and  $T_b$  values were also recorded. For torpid bats the TMR was calculated using the mean of the three lowest consecutive  $\dot{V}O_2$  values and the corresponding  $T_b$  and  $T_a$  values were also calculated. Torpor was defined as having occurred when  $T_b$  fell below 30.0 °C or when MR was less than that of bats with a  $T_b$  below 30.0 °C at the same  $T_a$ . The average daily MR (ADMR) was determined by integrating all measurements over a day. The daytime MR was calculated by integrating all measurements during the light phase.

The basal metabolic rate (BMR) was measured on separate occasions. Animals were placed in the chambers in the morning at a  $T_a$  of about 28 °C. The  $T_a$  was then slowly increased through the day by 2 °C increments lasting for approximately 2 h each to a maximum  $T_a$  of 33 °C. The BMR was calculated from the mean of the three lowest consecutive  $\dot{V}O_2$  readings of each individual. The thermal neutral zone (TNZ) was defined as the  $T_a$  range over which BMR of the individual bats was measured.

Length of a torpor bout was determined from the time when  $T_{\rm b}$  fell below 30 °C during torpor entry until it increased again to 30 °C during arousal.

Thermal conductance for normothermic and torpid individuals was calculated using the equation  $C = MR/T_b-T_a$ ).

We tested whether the "set point" for  $T_b$  during torpor (at which animals increase their TMR to prevent a further drop in  $T_b$ ) is related to the lowest  $T_b$  at which they can fly. For this experiment, torpor was induced at  $T_a$  17 ± 1 °C. Torpid bats were transferred to  $T_a$  22 ± 1 °C and  $T_b$  was continuously measured via the transmitter signal. Bats were observed until they were able to fly.

Upon completion of the experiments and removal of transmitters, bats were released at their site of capture on 13 December 1996.

All data are presented as means  $\pm$  one standard deviation. Regressions were fitted by the least-squares method. In those instances in which a single regression line did not fully explain the interrelation between two variables, two regression lines were fitted through the split data set. Best-fit linear regressions were assumed when the sum of the residual sum of squares for the two regressions were minimised. Data illustrated in the figures usually represent means of two measurements from the same individual at the same  $T_{a}$ ; occasionally only a single determination for one individual is shown. "N" represents the number of individuals and "n" the total number of measurements.

### Results

10

8

6

*M. minimus* entered torpor between  $T_{a}$ s of 14 and 25 °C (Figs. 1, 2). Torpor entry always occurred in the morning, immediately after the light switched on and was characterised by a decrease in MR and  $T_{\rm b}$ . After several hours, bats aroused and MR and  $T_b$  returned to resting values. All bats showed only a single bout of torpor on a given day. During the dark phase bats were usually active with MR about twice that during rest.

Although the general pattern of torpor at different  $T_{\rm a}$ s was similar,  $T_{\rm b}$  and MR of torpid bats were lower at  $T_a^{"}$  20 °C than at  $T_a$  24 °C (Fig. 1). The lowest  $T_b$ s were measured at  $T_a$  15 °C; however, TMR was increased in comparison to that at  $T_a$  20 °C (Fig. 1), an indication of the onset of thermoregulation by torpid bats since the  $T_{\rm b}$ had reached the set-point.

The  $T_{\rm b}$  of torpid individuals was strongly affected by  $T_{\rm a}$ , while that of normothermic individuals was little affected by  $T_{\rm a}$ . However,  $T_{\rm b}$  of normothermic bats did

Ta 15°C

40

30

25

00 35



Fig. 1 Daily fluctuations of body temperature  $(T_b)$  and metabolic rate (MR) of Macroglossus minimus at three different ambient temperatures ( $T_a$  15 °C;  $T_a$  20 °C;  $T_a$  24 °C). The solid bar represents the dark phase

vary between about 33 and 37 °C at all  $T_{\rm a}$ s measured (Fig. 2). The mean  $T_{\rm b}$  of normothermic bats below the TNZ was 35.6  $\pm$  1.5 °C (N = 5, n = 24). Torpid bats lowered  $T_{\rm b}$  with decreasing  $T_{\rm a}$ . The relationship between  $T_{\rm a}$  and  $T_{\rm b}$  of torpid bats was best described by two linear regressions with a transition at 20.4 °C. Above  $T_a$  20 °C,  $T_b$  approached  $T_a$  (P < 0.02;  $r^2 = 0.86$ ), below 19 °C the  $T_{\rm b}$  fell only slightly and showed no significant relationship with  $T_a$  (P < 0.29;  $r^2 = 0.16$ ). This suggests that thermoregulation of bats in steady-state torpor commences near  $T_a$  20 °C. The average  $T_b$  for torpid bats was  $23.1 \pm 1.4$  °C at  $T_a$  14.8 ± 0.2 °C (N = 4), 24.1  $\pm$  1.8 °C at  $T_a$  16.9  $\pm$  0.2 °C (N = 5), 25.3  $\pm$ 1.6 °C at  $T_a$  19.9 ± 1.0 °C (N = 5), and 28.5 ± 0.9 °C at  $T_{\rm a}$  24.4  $\pm$  0.3 °C (N = 3). The lowest individual  $T_{\rm b}$ recorded for a torpid bat was 21.6 °C.

The MR of both normothermic and torpid bats was also affected by  $T_a$  (Fig. 3). The BMR was  $1.29 \pm 0.20$  ml  $O_2 g^{-1} h^{-1} (T_b 35.5 \pm 1.1 \text{ °C}; \text{ body mass } 16.3 \pm 1.3 g;$ N = 5). This was observed within the TNZ which ranged between  $T_a$  30.9 and 33.0 °C. For normothermic, resting individuals below the TNZ, RMR increased linearly with decreasing  $T_a$  (P < 0.0001,  $r^2 = 0.86$ ). In contrast, the TMR fell from 0.96  $\pm$  0.27 ml O<sub>2</sub> g<sup>-1</sup> h<sup>-1</sup> contrast, the TMR fen from 0.96  $\pm$  0.27 m O<sub>2</sub> g <sup>-1</sup> (N = 3) at  $T_a 24.4 \pm 0.3$  °C to the mean minimum of 0.70  $\pm$  0.19 ml O<sub>2</sub> g<sup>-1</sup> h<sup>-1</sup> ( $T_b 25.3 \pm 1.6$  °C; body mass 15.5  $\pm$  1.5 g; N = 5) at  $T_a 19.9 \pm 0.1$  °C. The minimum TMR of an individual bat was 0.52 ml O<sub>2</sub> g<sup>-1</sup> h<sup>-1</sup> ( $T_b 23.6$  °C,  $T_a 19.9$  °C). At lower  $T_a$ s, TMR



Fig. 2 T<sub>b</sub> of normothermic (open symbols) and torpid (closed symbols) *M. minimus* as a function of  $T_a$ . The  $T_b$  in the TNZ is shown as open *triangles.* The  $T_{\rm b}$  of normothermic bats was not affected by  $T_{\rm a}$ . The  $T_{\rm b}$ of torpid bats fell with  $T_{\rm a}$ . This relationship was best described by two regressions intersecting at  $T_a$  20.4 °C. Above a  $T_a$  of 20 °C the regression was significant ( $T_b = 3.31 + 1.03T_a$ , P < 0.02,  $r^2 =$ 0.86) showing that  $T_{\rm b}$  decreased with decreasing  $T_{\rm a}$  (shown). Below the set point,  $T_b$  was not significantly related to  $T_a$  ( $T_b = 14.20 + 0.59T_a$ ; P < 0.291) (not shown), suggesting that animals were regulating their  $T_{\rm b}$ 



**Fig. 3** The MR of *M. minimus* as a function of  $T_a$ . The open circles represent the MR of normothermic individuals at rest (RMR; RMR = 6.93–0.17 $T_a$  (P < 0.000,  $r^2 = 0.86$ ). Open triangles show the basal MR of each individual and closed circles represent torpid individuals. A linear regression was fitted to MRs during torpor (TMRs) below a  $T_a$  of 20.4 °C (i.e. the  $T_a$  below which animals began to thermoregulate, see Fig. 2). TMR of thermoregulating, torpid bats increased significantly with decreasing  $T_a$  (TMR = 3.74–0.15 $T_a$ , P < 0.003,  $r^2 = 0.50$ )

increased parallel to the RMR (P < 0.003,  $r^2 = 0.50$ ). The mean TMR at  $T_a$  16.9  $\pm$  0.2 °C was 1.32  $\pm$  0.24 ml O<sub>2</sub> g<sup>-1</sup> h<sup>-1</sup> (N = 5) and 1.60  $\pm$  0.45 ml O<sub>2</sub> g<sup>-1</sup> h<sup>-1</sup> (N = 5) at  $T_a$  14.8  $\pm$  0.2 °C.

All six bats studied entered torpor at  $T_{a}$ s below 24 °C, but only three individuals used torpor at  $T_{a}$ s above 24 °C. Pooling data for individuals, the frequency of torpor was 90% when bats were exposed to  $T_{a}$ s below 24 °C and 50% above 24 °C. If an individual did not enter torpor in the morning it still lowered MR on average to 66% of the RMR measured in the afternoon and  $T_{b}$  dropped to approximately 32 °C.

Thermal conductance of normothermic bats decreased with  $T_a$  from 0.36  $\pm$  0.05 ml O<sub>2</sub> g<sup>-1</sup> h<sup>-1</sup> °C<sup>-1</sup> in the TNZ to a minimum of 0.22  $\pm$  0.02 ml O<sub>2</sub> g<sup>-1</sup> h<sup>-1</sup> °C<sup>-1</sup> at  $T_a$  20–15 °C (Fig. 4). Torpid bats also showed a decline in conductance from values that were similar to those of normothermic bats at  $T_a$  24 °C. At approximately  $T_a$  20 °C, the point at which TMR was minimal, the conductance of torpid bats was significantly (P < 0.01) lower (0.19  $\pm$  0.03 ml O<sub>2</sub> g<sup>-1</sup> h<sup>-1</sup> °C<sup>-1</sup>) than that of normothermic bats, but increased again to normothermic values in thermoregulating, torpid bats at  $T_a$  15 °C.

The duration of torpor bouts were inversely related to  $T_a$  (Fig. 5). Length of torpor bouts ranged from 36 min to just over 9 h. The mean duration of torpor bouts was 4:32  $\pm$  3:54 h at a  $T_a$  of approximately 24 °C, 6:00  $\pm$  2:27 h at  $T_a$  20 °C, 8:01  $\pm$  1:43 h at  $T_a$  17 °C, and 8:21  $\pm$  1:43 h at  $T_a$  15 °C. When fitted with two



Fig. 4 Thermal conductance of normothermic (*open symbols, circles below TNZ, triangles within TNZ*) and torpid (*closed symbols*) *M. minimus* as a function of  $T_a$ . The minimum conductance of torpid bats was significantly lower than that of normothermic bats (paired *t*-test, P < 0.01)

linear regressions, a transition occurred at  $T_a$  20 °C, similar to the transition observed for the other variables. This suggests that at the  $T_a$ s at which  $T_b$  was regulated by an increase of TMR, torpor bout duration showed no further prolongation with a decrease in  $T_a$ .

The minimum  $T_{\rm b}$  of torpid bats was well below the  $T_{\rm b}$  at which bats could fly. Four torpid bats at  $T_{\rm a}$  17 °C with a  $T_{\rm b}$  of 23.5 ± 1.0 °C could not fly. The bats re-



**Fig. 5** Duration of torpor bouts in *M. minimus* as a function of  $T_a$ . Length of torpor bouts increased with decreasing  $T_a$  (length of torpor bout = 14.60–0.43 $T_a$ , P < 0.002,  $r^2 = 0.35$ ). However, below  $T_a$  20 °C torpor bout length was maintained for approximately 8 h

mained motionless and were transferred to  $T_a 22$  °C to facilitate rewarming. At  $T_b 26$  °C they were able to crawl, but they could not fly until their  $T_b$  reached approximately 29 °C. Two individuals rewarmed at a rate of 0.85 °C min<sup>-1</sup> when rewarming from  $T_b 23.5 - 29.0$  °C.

To investigate whether torpor lowered daily energy expenditure, we determined the effect of torpor bout length on ADMR and the daytime MR. The ADMR and torpor bout length were negatively related at a  $T_a$  of 20 °C (ADMR = 4.45-0.17 torpor bout length; P < 0.007, $r^2 = 0.42$ ). The ADMR of bats exhibiting torpor bouts of 8 h at  $T_a 20$  °C was 3.32  $\pm 0.78$  ml  $O_2 g^{-1} h^{-1}$ , while that of bats remaining normothermic was 4.82  $\pm$  0.57 ml O<sub>2</sub> g<sup>-1</sup> h<sup>-1</sup>. At other  $T_a$ s the relationship between ADMR and the duration of torpor bouts was not significant due to low sample sizes and narrow bout ranges. Moreover, at low  $T_{a}$ s bats always became torpid, therefore we could not compare measurements for bats that entered torpor with those that remained normothermic. The average daytime MR (0600 hours onward) also decreased significantly with an increased duration of torpor at a  $T_a 20$  °C and 24 °C ( $T_a 20$  °C: daytime MR = 3.41– 0.23 torpor bout length, P < 0.000,  $r^2 = 0.70$ ;  $T_a$ 24 °C: daytime MR = 2.40-0.15 torpor bout length, P < 0.049,  $r^2 = 0.66$ ). Regressions at the others  $T_a$ s also had negative slopes between the two variables, but were not significant.

#### Discussion

Our study shows that the northern blossom-bat M. minimus, which in Australia has a distribution restricted to tropical regions, enters daily torpor over a wide range of  $T_{\rm a}$ s. However, torpid bats showed a thermoregulatory increase of TMR below about  $T_{\rm a}$  20 °C and did not allow their  $T_{\rm b}$  to fall below about 23 °C. Although torpor by these bats was relatively shallow, it did result in a reduction in energy expenditure.

Normothermic bats regulated  $T_b$  over a wide range of  $T_a$ s between about 33 and 37 °C when at rest, but increased their  $T_b$  significantly (P < 0.01) during activity. This  $T_b$  is similar to many small mammals; however, the regulation of  $T_b$  in *M. minimus* was less precise than has been reported for many other species (Withers 1992). The BMR of *M. minimus* measured in the present study was about 90% of that reported by McNab and Bonaccorso (1995) and about 80% of that predicted for a 16-g bat (Hayssen and Lacy 1985). The flexible  $T_b$  and the low BMR allows bats to reduce energy expenditure during the resting phase even when they are normothermic, and may be a reflection of their diet which consists largely of nectar, an energy-rich but unpredictable resource (MacMillen 1985).

The use of torpor by *M. minimus* significantly reduced MR. The MR of torpid bats was 60–80% of that in normothermic, resting bats at the same  $T_a$ . The most energy-efficient  $T_a$  for torpor was at about 20 °C, below

which torpid bats began to thermoregulate. At this  $T_a$ , TMR was 20% of RMR and 54% of the BMR. The  $Q_{10}$  between the BMR and the mean TMR at  $T_a$  20 °C was 1.82 suggesting that the reduction of the TMR below BMR was due to temperature effects (Geiser 1988) and there was no evidence for metabolic inhibition.

Torpor also affected daily energy expenditure. Both the ADMR and the daytime MR were negatively related to torpor bout length at some  $T_{a}$ s suggesting that torpor is important for energy conservation. However, at other  $T_{a}$ s ADMR was not affected by torpor bout length, although the TMR was significantly reduced in comparison to the RMR. This shows that as in other heterothermic mammals ADMR is not only affected by the energy expenditure during torpor, but also the energy expenditure during the active phase at night (Song and Geiser 1997).

The minimal thermal conductance of normothermic M. minimus was approximately 15% lower than predicted for a 16-g mammal (Herreid and Kessel 1967). During torpor, conductance fell even further to a minimum value that was about 30% below that predicted. However, conductance during torpor was not correlated with TMR, suggesting that MR during torpor can not be explained by low conductance. It is likely that the very low conductance during torpor is a consequence of low MR and thus low peripheral circulation (Hosken and Withers 1997).

M. minimus entered torpor strictly on a daily basis; bats always became torpid when lights came on in the morning and they aroused spontaneously after several hours. This timing of entry into torpor differs from many other heterothermic mammals which begin torpor during the night well before daylight, particularly when  $T_{\rm a}$  and food availability are low. In some species there is strong evidence that the onset of torpor is affected by energy expenditure with earlier entries into torpor when MR is high (Geiser 1986; Hiebert 1992). However, like M. minimus, the related common blossom-bat S. australis also entered torpor at the beginning of the light phase (Geiser et al. 1996) independent of  $T_a$  and thus the amount of energy used during the night. In the field, S. australis does not return to its roost until dawn (Law 1993) suggesting that termination of activity and the onset of rest or torpor phase in blossom-bats occurs at the beginning of the light phase. This suggests that the onset of torpor in these species is not determined by the amount of energy they used before torpor entry, but rather by photoperiod or a strong circadian rhythm.

In contrast to onset of torpor, the duration of torpor in *M. minimus* was temperature-dependent as in many other mammals (French 1982). Overall, bouts of torpor lengthened with decreasing  $T_a$  and  $T_b$ . However, at  $T_as$ below the set point for  $T_b$ , bout length was maintained for a maximum of about 8 h. This observation supports the argument that the duration of torpor is linked to levels of energy expenditure and  $T_b$  during torpor (Geiser and Kenagy 1988). Above the set point for  $T_b$ , the TMR of *M. minimus* decreased with  $T_a$  and  $T_b$  and torpor bouts increased. In contrast, at  $T_a$ s below the set point for  $T_b$ , torpor bouts were constant, whereas TMR increased and  $T_b$  exhibited only a slight decrease. The correlation between the length of a torpor bout, TMR and  $T_b$  provides further support for the hypothesis that in many species the duration of torpor is linked to energy expenditure and  $T_b$  both during daily torpor (Geiser 1986) and hibernation (Willis 1982).

The mean minimum  $T_{\rm b}$  observed during torpor in M. minimus was about 23 °C. This is 7 °C higher than predicted for a daily heterotherm of that body mass (Geiser and Ruf 1995). The minimum  $T_{\rm b}$  of *M. minimus* was also about 5 °C higher than that of S. australis captured in the subtropical part of its range. S. australis had minimum  $T_{\rm b}$ s much closer to those predicted for similar-sized heterothermic endotherms. These observations suggest that the minimum  $T_{\rm b}$  of species exhibiting daily torpor is not only strongly affected by body size (Geiser and Ruf 1995), but also by the conditions where they live. The lowest mean monthly  $T_a$  that M. minimus is exposed to in the wild (near Cairns) is 21 °C, an  $T_a$ similar to which the species begins to defend its  $T_{\rm b}$ during torpor. In contrast, the lowest mean monthly  $T_{\rm a}$ that S. australis is exposed to in its subtropical range is about 14 °C, which is only slightly below the  $T_a$  at which this species defends its  $T_{\rm b}$  during torpor.

While environmental conditions appear to affect the minimum  $T_b$  of *M. minimus*, individuals were unable to fly until their  $T_b$  was about 29 °C. Similar observations have been made for the insectivorous bat *Miniopterus* schreibersii (Morrison 1959). This suggests that the ability to maintain coordinated movements do not play an important role in the selection of the minimum  $T_b$  in heterothermic mammals.

Similar to the minimum  $T_{\rm b}$ , the minimum TMR of M. minimus was also higher than predicted (Geiser 1988) and significantly higher than that measured for S. australis. This relatively high TMR is further evidence that torpor in the tropical M. minimus is relatively shallow.

The fact that *M. minimus* has a less well-developed pattern of torpor than S. australis may partly explain its restriction to tropical areas. However, other factors may also restrict the range of *M. minimus* and the exposure to high  $T_{\rm a}$ s in the tropics in turn may not provide the selective pressure to lower the  $T_{\rm b}$  beyond the values measured in the present study. These may include the presence of flowering mangroves, particularly Sonneratia sp. (Start and Marshall 1976). The lack of mangroves may account for the absence of M. minimus on the tropical, but cooler Atherton tablelands in northern Queensland where S. australis does occur (B. Law, unpublished data); however, this does not explain the presence of *M. minimus* at altitudes of 1000 m in New Guinea (Flannery 1990). McNab and Bonaccorso (1995) provide some anecdotal evidence that thermoregulation in M. minimus at high altitudes in New Guinea may differ from those at low altitudes, but this needs to be verified by detailed physiological investigations.

In the past it was widely believed that torpor is an adaptation restricted to animals inhabiting cold climates. More recent evidence on tropical microchiropteran and megachiropteran bats (Kulzer and Storf 1980; Genoud et al. 1990; McNab and Bonaccorso 1995; Audet and Thomas 1997; present study), and small primates (Schmid 1996) suggests that although cool temperatures may facilitate torpor, it is clearly not an exclusive adaptation to the cold. Torpor appears to be used for energy conservation even in the tropics by species that have a limited ability to store fat and/or have to overcome periods of food shortage. The significant reduction of MR even at moderate  $T_{as}$  certainly demonstrates that torpor is effective in lowering energy expenditure at  $T_{\rm a}$ s commonly experienced in the tropics. It is therefore likely that torpor is widely used by small tropical species for conserving their limited energy resources.

Acknowledgements We would like to thank Mark Brigham for advice and comments on the manuscript, Merrilyn Lean for her help with netting the bats despite the crocodiles, the Cairns Port Authority for allowing us to net the bats on port grounds and M. Hopkins for supporting BSL's stay at Atherton. This work was supported by a grant of the Australian Research Council to FG and a post-doctoral fellowship to BSL. Experiments were conducted under a UNE animals ethics committee permit.

#### References

- Audet D, Thomas DW (1997) Facultative hypothermia as a thermoregulatory strategy in phyllostomid bats, *Carollia per*spicillata and Sturnira lilium. J Comp Physiol B 167: 146–152
- Bartholomew GA, Dawson WR, Lasiewski RC (1970) Thermoregulation and heterothermy in some of the smaller flying foxes (Megachiroptera) of New Guinea. Z Vergl Physiol 70: 196–209
- Coburn DK, Geiser F (1996) Daily torpor and energy savings in a subtropical blossom-bat, *Syconycteris australis* (Megachiroptera). In: Geiser F, Hulbert AJ, Nicol SC (eds) Adaptations to the cold: tenth international hibernation symposium. University of New England Press, Armidale, pp 39–45
- Flannery TF (1990) The mammals of New Guinea. Brown, Carina
- French AR (1982) Effects of temperature on the duration of arousal episodes during hibernation. J Appl Physiol 52: 216–220
- Geiser F (1986) Thermoregulation and torpor in the Kultarr, Antechinomys laniger (Marsupialia: Dasyuridae). J Comp Physiol B 156: 751–757
- Geiser F (1988) Reduction of metabolism during hibernation and daily torpor in mammals and birds: temperature effect or physiological inhibition? J Comp Physiol B 158:25–37
- Geiser F, Kenagy GJ (1988) Torpor duration in relation to temperature and metabolism in hibernating ground squirrels. Physiol Zool 61: 442–449
- Geiser F, Ruf T (1995) Hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns. Physiol Zool 68: 935–966
- Geiser F, Coburn DK, Körtner G, Law BS (1996) Thermoregulation, energy metabolism, and torpor in blossom-bats, Syconycteris australis (Megachiroptera). J Zool (Lond) 239: 583–590
- Genoud M, Bonaccorso FJ, Arends A (1990) Rate of metabolism and temperature regulation in small tropical insectivorous bats (*Peropteryx macrotis* and *Natalus tumidirostris*). Comp Biochem Physiol 97A: 229–234
- Hayssen V, Lacy RC (1985) Basal metabolic rates in mammals: taxonomic differences in the allometry of BMR and body mass. Comp Biochem Physiol 81A: 741–754

- Herreid CF, Kessel B (1967) Thermal conductance in birds and mammals. Comp Biochem Physiol 21: 405–414
- Hiebert SM (1992) Time-dependent thresholds for torpor initiation in the rufous humming bird (*Selasphorus rufus*). J Comp Physiol B 162: 249–255
- Hock RJ (1951) The metabolic rates and body temperatures of bats. Biol Bull 101: 289–299
- Hosken DJ, Withers PC (1997) Temperature regulation and metabolism of an Australian bat, *Chalinolobus gouldii* (Chiroptera: Vespertilionidae) when euthermic and torpid. J. Comp Physiol B 167: 71–80
- Kulzer VE, Storf R (1980) Schlaf-Lethargie bei dem afrikanischen Langzungenflughund Megaloglossus woermanni Pagenstecher, 1885. Z Säugetierkd 45: 23–29
- Law BS (1993) Roosting and foraging ecology of the Queensland blossom bat (*Syconycteris australis*) in north-eastern New South Wales: flexibility in response to seasonal variation. Wildl Res 20: 419–431
- Law BS (1994) Climatic limitation of the southern distribution of the common blossom bat, *Syconycteris australis* in New South Wales. Aust J Ecol 19: 366–374
- Lyman CP (1982) Who is who among the hibernators. In: Lyman CP et al (eds) Hibernation and torpor in mammals and birds. Academic Press, New York, pp 12–36
- MacMillen RE (1985) Energetic patterns and lifestyle in the Meliphagidae. N Z J Zool 12: 623–629
- McKean JL, Mcoy M, Spencer HJ (1995) Northern blossom-bat, Macroglossus minimus. In Strahan R (ed) The mammals of Australia. Reed Books, Chatswood
- McNab BK, Bonaccorso FJ (1995) The energetics of pteropodid bats. Symp Zool Soc Lond 67: 111–122

- Morrison P (1959) Body temperatures in some Australian mammals. I Chiroptera. Biol Bull 116: 484–497
- Ransome RD (1990) The natural history of hibernating bats. Helm, Bromley Kent
- Schmid J (1996) Oxygen consumption and torpor in mouse lemurs (*Microcebus murinus* and *M. myoxinus*): preliminary results of a study in western Madagascar. In: Geiser F, Hulbert AJ, Nicol SC (eds) Adaptations to the cold: tenth international hibernation symposium. University of New England Press, Armidale, pp 47–54
- Song X, Geiser F (1997) Daily torpor and energy expenditure in Sminthopsis macroura: interactions between food and water availability and temperature. Physiol Zool 70: 331–337
- Start AN, Marshall AG (1976) Nectarivorous bats as pollinators of trees in West Malaysia. In: Barley J, Styles BT (eds) Variation, breeding and conservation of tropical forest trees. Academic Press, New York, pp 141–150
- Thomas DW (1995) The physiological ecology of hibernation in vespertilionid bats. Symp Zool Soc Lond 67: 233–244
- Willis JS (1982) The mystery of the periodic arousal. In: Lyman CP et al (eds) Hibernation and torpor in mammals and birds. Academic Press, New York, pp 92–103
- Withers PC (1977) Measurement of  $\dot{V}_{\rm O2}$ ,  $\dot{V}_{\rm CO2}$  and evaporative water loss with a flow-through mask. J Appl Physiol 42: 120–123
- Withers PC (1992) Comparative animal physiology. Saunders, Fort Worth

Communicated by I.D. Hume