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Abstract

The proportion of organisms exposed to warm conditions is predicted to increase during global warming. To better
understand how bats might respond to climate change, we aimed to obtain the first data on how use of torpor, a crucial
survival strategy of small bats, is affected by temperature in the tropics. Over two mild winters, tropical free-ranging bats
(Nyctophilus bifax, 10 g, n = 13) used torpor on 95% of study days and were torpid for 33.5618.8% of 113 days measured.
Torpor duration was temperature-dependent and an increase in ambient temperature by the predicted 2uC for the 21st

century would decrease the time in torpor to 21.8%. However, comparisons among Nyctophilus populations show that
regional phenotypic plasticity attenuates temperature effects on torpor patterns. Our data suggest that heterothermy is
important for energy budgeting of bats even under warm conditions and that flexible torpor use will enhance bats’ chance
of survival during climate change.
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Introduction

It is predicted that global warming will expose organisms to new

thermal challenges and will result in poleward or altitudinal shifts

of animals [1]. While a change in distribution to deal with climate

change may be an option for some species, the response of animals

is often too slow and not all can move, resulting in mismatching

phenologies with potentially detrimental effects [2–3]. However,

predictions on how animals might respond to climate change often

rely on geographic ranges of species and the climate within these

[4] and generally assume that species are static and have limited

functional flexibility. Contrary to this, endothermic mammals,

which have received little attention with regard to climate change

[5], may adjust form and function to better suit the thermal

conditions they were exposed to during their development [6–7].

This is especially true for heterothermic mammals capable of

expressing torpor, which are known to be highly flexible in

adjusting their energy requirements seasonally and regionally [8–

13]. Importantly, the phenotypic plasticity of energy expenditure

afforded by the opportunistic use of torpor appears to be a key

factor in reducing the risk of extinction in mammals [14–15] and

may be crucial in dealing with climate change and other

anthropogenic disturbances.

Heterothermic endotherms use reductions in metabolic rate

(MR) and body temperature (Tb) during periods of torpor for

energy conservation [16]. Torpor is used by diverse birds and

mammals, often when food is limited, but also without apparent

energetic stress to enhance fat stores for future energy demanding

events, or to avoid predators [17–20]. Heterothermy is used by

members of more than half of all mammalian orders [14] and is

expressed especially in small species because their thermoregula-

tory energy expenditure can become costly during exposure to low

ambient temperatures (Ta).

Torpor use appears paramount in small temperate bats and it is

well established that they often express a sequence of multiday

torpor bouts (i.e. hibernation) during winter and short bouts of

torpor lasting for part of the day in summer [21–23]. In contrast, it

was believed in the past that bats inhabiting tropical regions do not

use torpor at all because of mild environmental conditions [24].

This view is no longer supported because short bouts of torpor

have been observed in captive tropical bats [25–27], and because

subtropical bats express multiday torpor in the wild [28–30].

However, in the tropics essentially all information on the use of

mammalian torpor in nature is currently limited to dwarf lemurs

and tenrecs [31–34], despite the enormous diversity of tropical

bats. Although bats comprise .20% of all mammals and the vast

majority of these live in the tropics [27], only two individuals of a

single species have been examined with regard to torpor in the

wild [11].

Global warming is predicted to increase the numbers of bats

exposed to tropical or at least warm conditions. Because this will

affect energy use and foraging requirements, understanding the

thermal biology of tropical bats in the wild will provide potential

insights into how bats from other climates might respond to
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climate change. Although an increased Ta will reduce energy

expenditure for normothermic thermoregulation at high Tb, if bats

do not use torpor at all their energy requirements will be

substantially increased even under warm conditions [35]. The

purpose of our study was twofold. We (i) aimed to provide the first

long-term quantitative data on torpor use and activity patterns in

relation to ambient conditions by tropical free-ranging northern

long-eared bats, Nyctophilus bifax, that are entirely restricted to

subtropical/tropical regions. We (ii) used these data and data from

the literature to make predictions about how thermal energetics

and torpor patterns of bats from tropical and other climate zones

may be affected by climate change.

Materials and Methods

Permits to undertake the research were provided by the UNE

Animal Ethics Committee (AEC08/046, AEC09/058) and

Queensland Parks and Wildlife Service (WITK04955708). A

small subset of the data were published previously [36], however, a

substantial amount of new data were added and all were re-

analysed.

The field study was undertaken over two consecutive austral

winters in June 2008 and July/August 2009 at Djiru National Park

(17u509S, 146u039E), located in the tropical north of the Australian

east coast and within the northern parts of the distribution range of

N. bifax [37]. During both years, Ta was measured with

temperature data loggers (60.5uC, iButton thermochron

DS1921G, Maxim Integrated Products, Inc., USA) in the shade

2 m above the ground. Thermal conditions during the two winters

were similar: the overall mean Ta was 18.861.6uC and the mean

Ta minima and maxima were 16.462.4uC and 21.961.7uC,

respectively. The lowest and highest Ta recorded was 10.6 and

25.3uC, respectively.

Bats were netted for several hours after sunset. Captured bats

were weighed to the nearest 0.1 g using an electronic scale and

kept overnight. Captive bats were hand fed with mealworms and

given water. On the following afternoon a small patch of fur from

between the shoulder blades was removed and a temperature-

sensitive radio-transmitter (,0.5 g, LB-2NT, Holohil Systems

Inc., Canada) was glued to the exposed skin using a latex adhesive

(SkinBond, Smith and Nephew United, Australia). The pulse rate

of these transmitters is temperature-dependent and all transmitters

were calibrated to the nearest 0.1uC in a water bath between 5 and

40uC against a precision thermometer before attachment. External

transmitters provide a reasonable measure of core Tb as Tskin of

resting or torpid small mammals differs by ,2uC from core Tb

[38]. Transmitters worn and shed by bats (3 in 2008; 1 in 2009)

were retrieved and re-calibrated 21 to 26 days after the initial

calibration and were within 0.5uC of the initial calibration over the

entire temperature range.

Bats were released at their capture site and on the following

morning and on every day bats retained the transmitter each

individual, identified by the frequency of its transmitter, was radio-

tracked to its roost location. To automatically record Tskin every

10 min, remote receiver/loggers with antennae [39] were placed

within range of the bats’ transmitter signal. Receiver/loggers were

checked every morning when bats were located to ensure

transmitter reception. Manual readings of the transmitter signals

were taken daily to certify the accuracy of receiver/logger

readings. Data from receiver/loggers were downloaded and

batteries replaced every three days.

Data were obtained for a total of 35 bat days (n = 7 individuals,

4 females, 3 males; body mass: 10.460.7 g) in June 2008. During

July/August 2009 data were obtained for a total of 78 bat days

(n = 6 individuals, 4 females, 2 males; body mass: 9.960.7 g,).

Mean body mass did not differ between years (P = 0.3, T = 1.1).

Torpor bouts are often defined as periods with Tb ,30uC [40].

As the Tb-Tskin differential during torpor is generally ,2uC, we

defined torpor bouts as the time when Tskin was ,28uC. Data

analyses were performed using StatistiXL (V 1.8, 2007); data are

reported as means 6 SD (n = number of individuals, N =

number of observations). Means of each individual were used to

calculate means for repeated measures. Results were considered

significant when alpha was ,0.05. To determine whether timing

of arousals and torpor entries differed significantly from random, a

Rayleigh test was used. T-tests were used to compare independent

means; data of the sexes were pooled because they were

statistically indistinguishable. Linear regressions were fitted by

the least squares method and ANCOVAs were used to compare

linear regressions. If no difference in slope between individuals or

study periods was observed, data were pooled and regressed

together.

Results

Torpor Patterns
A total of 210 torpor bouts were recorded over both winters.

Torpor was used on 83% (June 2008) and 100% (July/August

2009; both years combined 95%) of days on which data were

collected. In both years, bats expressed different patterns of

thermoregulation, entering 0 to 4 torpor bouts/day; some bats

remained torpid for an entire day (5.7% of torpor days; Fig. 1).

The two most common temporal patterns were one torpor bout/

day (31.1%) and two torpor bouts/day (33.0%), typically with one

bout in the morning and the other in the afternoon. Four bouts/

day were rare (6.6%), but three bouts/day were relatively common

(23.6%; Fig. 1), with the third bout occurring during the night

before a possible early morning foraging period.

Mean torpor bout duration for both winters was 4.563.1 h

(n = 13, N = 210; years did not differ: P = 0.7, T11 = 0.4). The

longest torpor bout recorded was 33.3 h and a total of 31 torpor

bouts (out of 210) were .10 h. Torpor bouts were negatively

correlated with minimum Ta (R2 = 0.2, P,0.001; Fig. 2). The two

Figure 1. Tskin of two different individual N. bifax and Ta

showing different patterns of torpor. The patterns shown are (i,
Tskin: open circles, Ta: dotted line) an individual that remained torpid
during the whole day and aroused only in the evening to possibly
forage, and the second pattern shows (ii, Tskin: closed circles, Ta: smooth
line) an individual displaying the typical morning and afternoon bouts
of torpor along with an additional torpor bout during the night. The
horizontal black and white bars at the bottom of the graphs represent
night and day, respectively.
doi:10.1371/journal.pone.0040278.g001

Torpor in a Tropical Bat and Climate Change
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longest torpor bouts recorded for each individual were strongly

affected by minimum Ta (R2 = 0.8, P,0.001; Fig. 2) and the

thermal response for this relationship was pronounced (Q10 = 10).

Skin Temperature
Mean daily minimum Tskin in torpid N. bifax during both

winters was 20.163.1uC (n = 13, N = 102; years did not differ:

P = 0.1, T11 = 1.8). The lowest individual Tskin value recorded was

11.3uC (Ta = 10.6uC). The daily minimum torpid Tskin was

correlated with Ta (R2 = 0.5, P,0.001; Fig. 3). The mean

differential between daily minimum Tskin during torpor and the

corresponding Ta was 2.161.7uC (n = 13, N = 101; years did not

differ: P = 0.7, T6 = 0.4).

Timing of Torpor and Activity
Entries into torpor in 2008 (Fig. 4) displayed a peak at a mean

time (angle) of 8:1465:10 h (n = 7, N = 43); in 2009 the mean time

was 2:5065:15 h (n = 6, N = 167; 2009), but timing of torpor

entries did not differ significantly from random (2008: Rayleigh

Z = 0.3, P = 0.2; 2009: Z = 0.5, P = 0.2). Arousals were non-

randomly distributed in 2008 (Z = 6.0, P = 0.002) with a mean

time of 16:2064:17 h (n = 7, N = 43), but not in 2009 (mean:

15:0265:04 h, n = 6, N = 167, Z = 2.5, P = 0.1). Evening arousals

likely for foraging occurred at sunset 600:06 h (n = 7, N = 22;

2008) and slightly before sunset 00:06600:04 h (n = 6, N = 60;

2009). The proportion of a night N. bifax remained normothermic

Figure 2. Duration of torpor bouts (log10) as a function of the
minimum Ta of each torpor bout. All torpor bouts recorded are
represented by the open circles and dashed line (log10 TBD = 2.1–
0.09[Ta uC]; R2 = 0.2, P,0.001, F1,209 = 55.0). The two longest bouts
recorded for each individual are represented by the closed circles and
solid line (log10 TBD = 2.7 - 0.1[Ta uC]; R2 = 0.8, P,0.001, F1,25 = 73.3).
doi:10.1371/journal.pone.0040278.g002

Figure 3. Daily torpid minimum Tskin of N. bifax as a function of
Ta during winter. This relationship is represented by the following
equation: minimum Tskin(uC) = 2.4+1.0[TauC]; R2 = 0.5, P,0.001,
F1,100 = 101.2.
doi:10.1371/journal.pone.0040278.g003

Figure 4. Timing of activity and torpor. Distribution of times of
arousals from torpor (top half of graphs) and entries into torpor
(bottom half of graphs) of N. bifax during (A) June 2008 and (B) July/
August 2009 relative to the time of sunset (0 hours). Each individual
contributed several points to these graphs, ranging from 2 to 41 data
points. Each bar represents a 30 minute period. The horizontal black
and white bars at the top and bottom of the graphs represent night
and day, respectively.
doi:10.1371/journal.pone.0040278.g004

Torpor in a Tropical Bat and Climate Change
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during both winters was positively correlated with mean nightly Ta

(R2 = 0.4, P,0.001; Fig. 5).

Discussion

Our study provides the first long-term quantitative data of

torpor use and patterns in a tropical bat in its natural

environment. It also is the first to show that tropical bats can

remain torpid for .1 day. While this was a rare occurrence, torpor

was frequently used (95% of all study days) even though weather

conditions were mild. Our extensive field study of N. bifax and a

recent brief field study on two individual N. geoffroyi during winter

in a tropical habitat [11] confirm earlier findings from laboratory

work [25–26] that torpor is indeed widely used by tropical bats for

energy conservation in the wild. Further, data on tropical bats and

on other mammals such as lemurs and tenrecs from Madagascar

[31–33] show that, contrary to the widely held view, torpor use is

prevalent in tropical regions. Frequent use of torpor by bats during

winter in tropical regions, as reported here for N. bifax, highlights

the importance of energy conservation for small microbats even

under relatively mild conditions.

Several different patterns of torpor were expressed by N. bifax

during both winters, with a peak in arousals from torpor bouts just

before sunset. The variation in use of torpor by N. bifax is likely in

response to variations in weather conditions and food abundance

and N. bifax were normothermic/active longer on warmer nights

like other bat species [23,30]. For insectivorous bats specifically it

makes sense to use more torpor at low Ta to save energy when

feeding is difficult. In the current study torpor bout duration at

minimum Tas .14uC varied widely above and below the

regression line, whereas at minimum Tas ,14uC all torpor bouts

fell above the regression line (Fig. 2). This effect of Ta may reflect

insect availability, which decreased significantly at Tas ,16uC in

the study region [41]. It is also important to note in this context

that the thermal response of torpor bout duration of N. bifax was

pronounced (Q10 = 10), which is about 3-fold of that usually

observed in temperate bats (Q10 = 2.6 to 3.9, [42]). This high

thermal sensitivity will permit tropical N. bifax to use relatively long

torpor bouts in response to a small reduction of Ta and, on the

other hand, be active for much of the night when Ta increases.

The Tskin of torpid N. bifax approached Ta, with a minimum Ta-

Tskin differential of ,2uC. Even on particularly cold days when

Figure 5. The proportion of a night that N. bifax spent
normothermic as a function of mean nightly Ta. This relationship
is represented by the following equation: proportion night normother-
mic = 20.9+0.09[Ta uC]; R2 = 0.4, P,0.001, F1,95 = 51.1.
doi:10.1371/journal.pone.0040278.g005

Figure 6. Measured and predicted changes in torpor bout
duration in relation to predicted increases in Ta. Measured (black
bars) and predicted (white and grey bars) torpor bout duration in
tropical and subtropical N. bifax (A), and in tropical and temperate N.
geoffroyi (B). Measured values are those obtained at the tropical sites at
the mean minimum Ta (Ta 16.4uC and Ta 16.4+2uC N. bifax, Ta 19.2uC
only for N. geoffroyi because no Ta-torpor bout duration regression is
available). Predicted torpor bout durations were calculated from
regressions in subtropical N. bifax [36] and from temperate N. geoffroyi
in summer (white bars, [22]) and winter (grey bar, [23]).
doi:10.1371/journal.pone.0040278.g006

Torpor in a Tropical Bat and Climate Change
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Tskin was very low, bats apparently continued to thermo-conform

because the Ta-Tskin differential remained constant suggesting that

torpid bats did not thermoregulate. The lowest Tskin recorded was

11.3uC, which is rather low for a tropical mammal and suggests

that individuals of this population of N. bifax can approximate the

low Tbs that are characteristic of hibernation in cold climates

[16,35]. This is supported by laboratory data showing that tropical

N. bifax commenced to thermoregulate during torpor only at Ta

6.7uC and the minimum Tb was 7.3uC [43]. Therefore, the

generally high Tskin in the current study compared to cold-climate

hibernators appears to be mainly a reflection of the high Tas bats

experienced. However, the minimum Tb measured in the

laboratory was also somewhat higher than in temperate hiberna-

tors and this trait appears to be selected by the Ta animals are

exposed to in the wild [8,36].

What are the implications of our data for the effect of climate

change on bats? We used two approaches to assess this: (i) We

assumed that the thermal physiology of bats is constant and

estimated using data from the present study and published data

[43] how a predicted Ta increase by 2uC will affect torpor patterns

and consequently energy use, and (ii) used data on thermal biology

from free-ranging subtropical and temperate Nyctophilus popula-

tions to test these predictions.

If we (i) use data presented here and those on thermal energetics

of tropical N. bifax [43], we can estimate energy expenditure

during torpor from mean Tskin and MR regressions because the

animals were thermo-conforming and rewarmed largely passively,

in comparison to normothermic thermoregulation over the same

time period. At a mean Ta of 18.8uC, N. bifax remained torpid for

33.5% of the time, or 8.02 h/day, with a mean Tskin of 24.3uC
during torpor using 525 J (assuming 19.7 kJ/lO2 for metabolised

fat, [44]). Resting normothermic bats at Ta 18.8uC would have

used 7,710 J, and the energy saved by using torpor would be

7,185 J (895.8 J/h) or 28% of the daily energy expenditure of a

10-g temperate bat (25.88 kJ/d, [45]). The thermal response of

torpor bout duration (Fig. 2) predicts that a 2uC increase in Ta will

shorten the duration of torpor to 21.8% of the time (5.23 h/day),

and energy expenditure during torpor will be 467 J. Resting

normothermic bats at Ta 20.8uC would need less energy for

thermoregulation (4,131 J) and energy savings due to torpor would

decrease to 3,664 J (700 J/h) or 14% of the predicted daily energy

expenditure [45]. Thus, even at the higher Ta, energy savings by

using torpor are substantial and biologically meaningful.

Pronounced discrepancies were observed when we (ii) examined

whether and how the thermal biology of populations of bat species

in the wild differs from that predicted from regressions. In N. bifax

mean torpor bout duration of a subtropical population [36] is

predicted to decrease from 3.0 to 1.8 h if Ta increases by 2uC from

the tropical mean minimum Ta of 16.4uC to 18.4uC (Fig. 2, 6).

However, measured torpor bout duration at the tropical site at Ta

16.4uC is in fact 3.8 h (127% of predicted) and 2.4 h at Ta 18.4uC
(136% of predicted). This shows that temperature effects on torpor

bout duration vary among populations and suggests that either the

tropical bats have acclimated or have been selected to maintain

relatively long torpor bouts at warm Ta. Measured and predicted

values differ even more in the congener N. geoffroyi (Fig. 6),

distributed over almost the entire Australian continent. Data from

N. geoffroyi from a temperate region in summer [22] predict that

torpor bout duration at the mean minimum Ta of 19.2uC in

tropical Northern Territory is only 1.7 h and will decline to 1.2 h

with a 2uC rise of Ta. Measured torpor bout duration in tropical N.

geoffroyi at a mean minimum Ta of 19.2uC is in fact 4.9 h [11], 2.8-

times that predicted from temperate bats. Winter data [23] predict

that torpor bout duration of temperate N. geoffroyi at a minimum

Ta of 19.2uC and a mean Tskin of 26.2uC is only 1.0 h, only 21%

of that measured in the tropics.

As torpor is usually associated with cold, whereas climate

change with global warming, what do our projections actually tell

us about bats in a warming climate? During periods of high

temperatures, heat waves are known to induce hyperthermia and

can kill large pteropodid bats [46]. However, pteropodids

comprise only a rather small number (,20%) of bat species and

many large members of this family may roost at exposed sites often

directly affected by Ta extremes. In contrast, most ‘microbats’

roost in sheltered areas like caves, mines, houses, under bark or

leaves that are buffered from thermal extremes, and, in addition to

using torpor, can also be tolerant of extremely high Ta exceeding

50uC [47]. Thus, our and previously available data suggest that by

using torpor opportunistically and by being able to tolerate high

Ta, small bats may be better equipped to deal with climate change

than is predicted from bio-climatic data, especially those species

that can shift their distribution to cooler habitats [48].

Obviously, there will be a limit to how far Ta can rise before

torpor will become ineffective and a tolerance of high Ta will be

exceeded. Moreover, some hibernating mammals are restricted to

mountain tops that do not permit further altitudinal adjustments to

climate change [2,49]. Consequently, those heterothermic mam-

mals with a period of winter dormancy that is strongly dependent

on historical phenological patterns, which are also often those

restricted to limited mountain habitats, are likely to be adversely

affected. Recent evidence also shows that hibernating bats are

susceptible to new pathogens, such as white-nose syndrome, which

kills bats by interfering with their seasonal hibernation [50]. In

contrast, opportunistic heterothermic species and those able to use

torpor efficiently even under varying thermal conditions, may be

able to deal with climate change and other detrimental factors

better than predictions from current models might suggest.
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