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Abstract Mammalian hibernation, which lasts on average
for about 6 months, can reduce energy expenditure by
>90% in comparison to active individuals. In contrast, the
widely held view is that daily torpor reduces energy
expenditure usually by about 30%, is employed for a few
hours every few days, and often occurs only under acute
energetic stress. This interpretation is largely based on
laboratory studies, whereas knowledge on daily torpor in
the field is scant. We used temperature telemetry to quantify
thermal biology and activity patterns of a small arid-zone
marsupial, the stripe-faced dunnart Sminthopsis macroura
(16.9 g), in the wild and to test the hypothesis that daily
torpor is a crucial survival strategy of this species in winter.
All individuals entered torpor daily with the exception of a
single male that remained normothermic for a single day
(torpor on 212 of 213 observation days, 99.5%). Torpor
was employed at air temperatures (Ta) ranging from
approximately −1°C to 36°C. Dunnarts usually entered
torpor during the night and aroused at midday with the
daily increase of Ta. Torpor was on average about twice as
long (mean 11.0±4.7 h, n=8) than in captivity. Animals
employed sun basking during rewarming, reduced foraging
time significantly, and occasionally omitted activity for
several days in sequence. Consequently, we estimate that
daily torpor in this species can reduce daily energy

expenditure by up to 90%. Our study shows that for wild
stripe-faced dunnarts daily torpor is an essential mechanism
for overcoming energetic challenges during winter and that
torpor data obtained in the laboratory can substantially
underestimate the ecological significance of daily torpor in
the wild.
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Introduction

The diversity of small insectivorous marsupials of the
family Dasyuridae in the Australian arid zone is high
(Dickman 2003) despite the low primary productivity of
this vast area that covers about half of the continent’s
landmass. More than half of the family’s species live
entirely or partially in the arid zone and it has been
suggested that in the insectivorous dasyurids the ability to
enter daily torpor is an important adaptation to survive in
this resource-poor environments (Geiser 2004). As daily
torpor, characterized by reductions in body temperature (Tb)
and metabolic rate for several hours, lowers daily energy and
water requirements (Ruf and Heldmaier 1992; Holloway and
Geiser 1995; Carey et al. 2003; Cooper et al. 2005; Gutman
et al. 2006), it may be crucial for survival and reproduction
of small insectivorous mammals in the arid zone.

The assumption that the use of daily torpor is a
significant survival strategy employed by arid-zone dasyurids
in the wild is to a large extent based on laboratory
investigations. Predominant among these is work on the
stripe-faced dunnart, Sminthopsis macroura (body mass
∼20 g), which is by far the best-studied species of the
family with regard to thermal biology (Godfrey 1968; Geiser
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and Baudinette 1987; Song et al. 1995; Lovegrove et al.
1999; Geiser 2004). This species enters torpor frequently
in the laboratory even when food is freely available
(spontaneous torpor) and thermal conditions are mild
(Geiser and Baudinette 1987). As there is no obvious
requirement for employment of torpor when food is
plentiful and without a thermal challenge, it has been
suggested that the use of spontaneous torpor in the
laboratory may reflect the requirement to deal with low
or fluctuating availability of food in their natural habitat.
Daily torpor may be part of the normal daily routine of
the species perhaps to reduce energy expenditure and
thus foraging and food requirements (Geiser and Baudinette
1987; Song et al. 1995; Körtner and Geiser 2000a).
However, this hypothesis has never been tested in the wild
and knowledge about other aspects of the ecology and
biology of S. macroura in the field is scarce (Morton and
Dickman 2008).

As laboratory conditions differ from those experienced
by wild animals and hence torpor expression is often less
pronounced in captivity (Geiser et al. 2000), the purpose of
our study was to quantify the thermal biology and torpor
patterns of S. macroura in relation to its activity in the field.
We especially aimed to obtain long-term data on individ-
uals in winter to gain a better understanding about how
important daily torpor is for energy conservation and how
torpor and foraging are interrelated.

Material and methods

The study was conducted in Astrebla Downs National Park,
southwestern Queensland (24° 10′ S, 140° 34′ E) during
the Austral winter (June to August 2007). The park is
situated ∼120 m above see level and is characterized by
plains of virtually vegetation-free gibber (ironstone pebbles)
and cracking clay soils that after rain support ephemeral
Mitchell grass (Astrebla spp.). During the time of our study,
aboveground vegetation was restricted to some of the larger
drainage lines whereas most of the Mitchell grass plains
were bare ground. Due to the flatness of the terrain and lack
of substantial vegetation cover, strong winds prevail
throughout most of the year. Drought is the norm for this
region and the environmental conditions experienced by the
animals during this study were by no means exceptional.

We used established pitfall-trap lines to trap dunnarts.
Each of nine trap lines consisted of six vertically buried
storm-water pipes (diameter 15 cm, depth 60 cm) that were
spaced 4–5 m apart and were linked with a fine wire-mesh
drift fence. Distance between pitfall lines was >1 km.

Core Tb was measured in eight dunnarts (six males, two
females) with implanted temperature-sensitive radio trans-
mitters (1.9 g; Sirtrack, Havelock, New Zealand). Depending

on food intake, body mass can vary by 5 g/day in this species
without obvious effects on locomotion, suggesting that
1.9-g transmitters do not unduly interfere with foraging
ability. Before implantation, transmitters were coated with
inert wax and calibrated over a temperature range of 9–
40°C to the nearest 0.1°C against a mercury thermometer
traceable to a national standard. Sterilized transmitters
were implanted intraperitoneally under general oxygen/
isoflurane anesthesia; ventral incisions were sutured, and
a topical anesthetic (Ban Itch, Apex Laboratories Pty.
Ltd., Sommerby, NSW, Australia) and Leuko Spray Bandage
(BSN medical (Aust) Pty. Ltd., Clayton, Vic, Australia) were
applied. After surgery, animals were orally administered with
liquid Children’s Panadol (Ermington, NSW, Australia), were
held for the following night and day while being provided
with kangaroo mince ad libitum supplemented with freshly
caught locusts and were released at the site of capture on the
following evening.

Measurements were performed during two field trips (1 to
30 June and 11 July to 15 August 2007). Tagged individuals
were radio-tracked to their burrows daily, beginning before
sunrise. For each animal, a portable data logging system
measuring the interval between two transmitter pulses every
10 min was placed close to the burrow (Körtner and Geiser
1998). Loggers had to be relocated if the animal had moved
to a different burrow and consequently, not all torpor entries
but almost all arousals were recorded. Data were down-
loaded to a computer after several days. Interval data were
converted to Tb values using the transmitter calibration
curves. Activity outside the burrow was inferred from the
absence of interval data from the logger trace (reception
distance was about 10 m). Torpor entry and arousal were
defined by Tb falling below and rising above 30°C,
respectively, and torpor bout duration was calculated from
the time that Tb remained below 30°C (Körtner and Geiser
2000b).

Air temperature (Ta) was measured ∼1 m aboveground in
the shade with a temperature logger at 30-min intervals to the
nearest 0.06°C (Hydrochron i-Buttons, Maxim Integrated
Products, Sunnyvale, CA, USA).

Energy expenditure values were calculated by combin-
ing timing, Tb, and Ta records from this study with
published metabolic rate measurements at similar Tas (body
mass 25 g, normothermia at Ta=16°C 1.68 kJ/h, normo-
thermia with radiant heat source 0.46 kJ/h, torpor 0.19 kJ/h,
active arousal 1.51 kJ, passive arousal 0.24 kJ; Geiser and
Drury 2003; Geiser et al. 2004). The energy content of
body fat was estimated to be 39.2 kJ/g (Withers 1992). A
linear mixed-effects model accounting for the repeated
measure design (R 2.7.0) was used to describe the
relationship between Ta and bout length as well as Ta and
minimum Tb during torpor. All other statistical tests were
preformed in Minitab V13.1 (Minitab Inc.). Significance

526 Naturwissenschaften (2009) 96:525–530



was assumed at a 5% level. Data are presented as the mean±
1SD (mean of the mean of individuals); n denotes the
number of individuals and N the number of measurements.

Results

During the time of our study, Ta ranged from an absolute
minimum of −0.9°C to a maximum of 35.5°C (Fig. 1). The
mean daily Tas were: 14.4±3.8°C (average), 5.9±3.6°C
(minimum), and 24.5±5.1°C (maximum).

The occurrence of torpor in the eight adult S. macroura
(capture body mass of 16.9±1.3 g) was high. Only one
individual male (Sm2) did not enter torpor on a single day
(5 June) during the study (Fig. 2), when Ta ranged from
12.3°C to 22.5°C. Thus, in the time between June and
August (austral winter), torpor occurred on 212 of 213
(99.5%, n=8) of observation days. Torpor was observed on
days when Ta minima were around 0°C but also occurred
when the maximum daily Ta ranged from 30°C to 35°C.

On average, torpor entry occurred around midnight, with
Tb falling from 37.6±0.6°C (n=8) during activity to well
below 30°C during torpor. Arousal usually occurred in the
late morning when Ta had increased significantly and one
individual was observed twice to bask in the sun during
rewarming with a minimum Tb of 19.3°C. Four individuals
occasionally displayed a second short (<2.5 h) torpor bout
in the afternoon. Mean night–morning torpor bout duration
was 9.0±3.2 h (n=6, N=77) in males and 17.0 h (n=2,
N=38) in females, but, in both sexes, torpor bout duration
increased significantly with decreasing average night Ta
(male: bout length[h]=−0.65Ta[°C]+15.95, P<0.001;
female: bout length[h]=−0.65Ta[°C]+24.11, P<0.001;
Fig. 3a). The model revealed a significant difference of

the intercept of the two regressions (F1104=155.6, P<0.001)
but not of the slope (F1104=0.3, P=0.59). The model was
modified accordingly by removing the interaction term
between Ta and sex and, hence, at all Tas, night–morning
torpor bouts were on average 8 h longer in females than in
males (F16=16.2, P=0.007). The minimum Tb reached
during torpor was also affected by Ta but without a
difference between sexes (Tbmin[°C]=0.23Ta[°C]+15.67,
R2=0.09, P<0.001; Fig. 3b). The individually recorded Tb
minima for all individuals was 12.3±2.2°C (n=8) and the
lowest recorded Tb was 11.3°C in a female (Sm4).

The extensive use of torpor in this species in the wild is
illustrated for a female (Sm4) in Fig. 4. This individual
displayed long bouts of torpor daily and over the illustrated
time period had only very brief normothermic periods
during midday. Timing of these normothermic periods
during the hottest part of the day and the fact that her
transmitter always remained within logger range suggest
that no foraging occurred over five successive days and
nights. During the entire 5.1 days (first torpor entry to final
arousal), the female was normothermic for only 16.7% out
of 122.5 h and torpid for the rest. During the July–August
measurement, this individual remained inactive on 15 out
of 36 days and torpor bouts were also exceptionally long.
For example, on 15–16 July, the female remained torpid
(Tb∼16°C) for 25.9 h. On this occasion, the animal entered
torpor in the late afternoon of 15 July, remained torpid
throughout the night and the next overcast and cool day,
partially aroused to 26°C at 15:00, re-entered torpor to 23°
C, and fully aroused at sunset to commence activity.

Discussion

Our study shows that torpor forms an integral part of the
daily life cycle of free-ranging S. macroura during winter.
Both males and females used daily torpor everyday with
only a single exception, and, on average, dunnarts remained
torpid for about half the day. Although torpor was longer
than a full day on one occasion, torpor bout duration
remained well below the maximum of several weeks
observed in hibernators (Geiser 2007; Bieber and Ruf
2009). Nevertheless, the long torpor bouts were accompa-
nied by only short periods of activity and it appears that the
low energy and water requirements during torpor allows the
species to substantially reduce winter foraging or even omit
foraging for a few days if this is required. Such multi-day
fasting in small mammals is usually only associated with
hibernation and obviously for much longer periods
(months) than observed here (French 1985; Geiser and
Ruf 1995). However, the omission of foraging for a few
days is evidently compatible with the torpor patterns of
some daily heterotherms despite the frequent arousals.
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Fig. 1 Traces of daily averages, maxima, and minima of air
temperature (Ta) for June to August 2007 at Astrebla Downs National
Park
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Dunnarts adjusted torpor use according to Ta and torpor
bouts were longer and deeper on cold nights. Females
remained torpid longer than males at any given Ta. It
appeared therefore that the females reduced energy expen-
diture further than males. Gender-related differences in torpor
use of free-ranging dasyurids have been reported previously
for the related mulgara (Dasycercus blythi) and fat-tailed
pseudantechinus (Pseudantechinus macdonnellensis) and
might be related to energy reallocation between different
phases of the prolonged reproductive cycle of dasyurid
marsupials (Geiser 2004; Körtner et al. 2008) that often
commences in winter (McAllan 2003). Although both
females showed no signs of imminent reproduction when
trapped initially, we were unable to re-trap these individuals
and it remained therefore unclear whether reproduction
commenced during the measuring periods.

Torpor in our study occurred over a wide range of Ta
from daily minima of <0°C to a daily maximum of 35.5°C.
These observations are similar to those made on four free-
ranging individuals of the related S. crassicaudata, which
entered torpor frequently in autumn and winter, albeit at
lower Ta (−2.4°C to 24.6°C; Warnecke et al. 2008). The
torpor occurrence of almost 100% observed here was well
above that observed for spontaneous torpor (food provided)
of captive individuals in winter (30%) but similar to
induced torpor (food withheld; Geiser and Baudinette
1987; Song et al. 1995). This suggests that, in the wild,
food availability in winter is low and animals use torpor to
deal with this energy shortage. This interpretation is also
supported by the relatively low body mass (16.9 g) of free-
ranging individuals in our study, which was well below that
of the species commonly measured in captivity (∼25 g;
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temperature (Tb) records for all
eight stripe-faced dunnarts radio-
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Geiser and Baudinette 1987; Song et al. 1995) and shows
that in the wild dunnarts carry little body fat stores. A
correlation between low body mass and frequent torpor use
has been previously demonstrated in small dasyurids
(Morton 1978; Holloway and Geiser 1996).

The mean minimum Tb measured during torpor (17.7°C,
present study) was only slightly lower than that of captive
individuals in winter (18.4°C, Geiser and Baudinette 1987).
However, the duration of torpor bouts measured here in the
wild (11 h) was on average about twice that in the
laboratory (6 h; food deprived, Ta∼16°C) and consequently
reduced energy requirements well below that often calcu-
lated for daily heterotherms measured at constant Ta in
captivity. Compared to the measured average daily energy
expenditure in captivity of 48 kJ/day (25g) for a normo-
thermic S. macroura (Geiser and Drury 2003; Geiser et al.

2004), a similar-sized wild dunnart showing torpor and
activity patterns similar to the female (Sm4) shown in
Fig. 4 (torpor 18.9 h, rest 3.4 h, arousal 1.7 h) would have
reduced daily energy requirements to only 11.8 kJ/day
(equivalent to 0.3 g of body fat, a 75% reduction in energy
turnover), provided the animal remained underground
during normothermia and arousals were achieved exclu-
sively by endogenous heat production. Venturing to the
surface and being exposed to solar radiation during arousal
and normothermia would have reduced daily energy
expenditure further to 5.5 kJ/day (equivalent to 0.14 g of
body fat, a 89% reduction in energy turnover; Geiser and
Drury 2003). Both calculated values for daily energy
expenditure are below the basal metabolic rate of this
species (13.1 kJ/day, Geiser and Baudinette 1987). Conse-
quently, daily torpor per se plus the ensuing reduction in
foraging requirements (Ruf et al. 1991; present study),
the daily Ta cycle, and the access to solar radiation can
reduce energy expenditure well below estimates based on
previous laboratory measurements (Ruf and Heldmaier
1992; Holloway and Geiser 1995).

Our study demonstrates that work on daily heterotherms,
which has been conducted almost entirely in the laboratory,
needs to be verified by field investigations. The most
frequently studied species in this regard, such as the Siberian
hamster (Phodopus sungorus; Ruf and Heldmaier 1992;
Stamper et al. 1999; Hiebert et al. 2000) or mice Peromyscus
spp. and Mus musculus (Lynch et al. 1978; Swoap et al.
2007), have been investigated with regard to many clearly
important functional questions. However, as almost nothing
is known about the torpor use of these species in the
field, it seems paramount that they are examined in the
wild to ensure that laboratory data can be interpreted in
an ecologically meaningful way.
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