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Abstract-l. We investigated the effects of photoperiod on the reproductive state and the occurrence and 
pattern of torpor in male Sminthopsis crassicaudata. 

2. Testes regressed when animals were exposed to a short photoperiod (L:D 8:16) and recrudesced under 
a long photoperiod (L:D 16:s). 

3. Animals entered torpor under both photoperiods and no significant differences were observed in the 
frequency or physiological variables of torpor of S. crassicaudata between the short and long 
photoperiods. 

4. The differences in the response to photoperiod in thermal physiology and reproduction suggest that, 
unlike in many rodent species, torpor and reproduction in S. crassicaudata are controlled by separate 
environmental cues and mechanisms. Copyright 0 1996 Elsevier Science Ltd. 

Key Word Index: Torpor; reproduction; photoperiod; marsupial; Sminthopsis crassicaudata; testes; 
metabolic rate 

INTRODUCTION 

In small mammals both thermoregulation at low 
temperatures and reproduction require a substantial 
increase in energy metabolism and thus food intake. 
Since many small mammals are thermally stressed in 
winter and may have to resort to torpor to reduce 
energy expenditure, most species reproduce in spring 
or summer when the cost of thermoregulation is 
relatively low, and food is generally more abundant 
than in winter. In many small mammals, therefore, 
torpor and reproduction appear to be mutually 
exclusive. 

The regular seasonal occurrence of reproduction 
and torpor, combined with the fact that the 
physiological changes are established prior to the 
initiation of these events, has resulted in many 
investigations into the factors that govern these 
processes. It is well established that external factors 
such as temperature and nutrient supply, as well as 
internal circannual rhythms, are involved in the 
appropriate timing of seasonal physiological changes. 
However, the most common environmental stimulus, 
triggering the onset of both reproduction and torpor, 
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appears to be photoperiod (Pengelley and Fisher, 
1963; Grocock and Clarke, 1974; Smith et al., 1978; 
Johnston and Zucker, 1980; Goldman et al., 1986; 
McAllan and Dickman, 1986; Steinlechner et al., 
1986; Kirsch et al., 1991). While ambient temperature 
(T,) and food supply generally show pronounced 
fluctuations, the extent of these cycles may vary from 
year to year. Photoperiod, however, maintains a 
constant annual cycle and can, therefore, be used as 
a precise and reliable cue. 

Although the effects of photoperiod on reproduc- 
tion and torpor have been studied in numerous 
eutherian mammals, with the majority of these 
studies involving rodents, little is known about its 
effect on marsupials. Therefore, we investigated the 
effects of photoperiod on torpor and reproductive 
state in the small (16 g), nocturnal dasyurid 
marsupial, Sminthopsis crassicaudata, which inhabits 
the mesic to arid regions of southern and central 
mainland Australia (Morton, 1978a). This species has 
a well-defined reproductive season, from mid-late 
July to late February (Morton, 1978~) that, at least 
in females, appears to be controlled by photoperiod 
(Godfrey, 1969; Smith et al., 1978). It is also known 
that S. crassicaudata enters daily torpor, both in the 
wild (Morton, 1978b, d; Frey, 1991) and, when 
subjected to cold T,s and/or food restriction, in the 
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laboratory (Godfrey, 1968; Geiser and Baudinette, 
1987; Holloway and Geiser, 1995). This species shows 
a seasonal change in the occurrence of torpor and, 
what is most interesting, torpor is most pronounced 
in winter when the reproduction season commences. 
We, therefore, tested the hypothesis that inter- 
relations between torpor and reproduction in 
marsupials differ from those in rodents. We 
investigated whether torpor patterns and occurrence 
are affected by photoperiod, and how these are 
related to the reproductive status of male S. 
crassicaudata. 

MATERIALS AND METHODS 

Fourteen adult male S. crassicaudata were 
obtained from a laboratory colony maintained by the 
Genetics Department of the University of Adelaide 
and transported to the University of New England 
(UNE), Armidale, NSW. Upon arrival at UNE in 
April 1992, the animals were divided into two groups 
of matched body mass, and kept in environmental 
chambers at a T, of 18 f 1°C. The animals were 
housed individually in cages, and were fed ad lib&urn 
a mixture of dried and commercial pet food and 
water. Vitamin (Pentavite) and calcium supplements 
were given twice a week and several Tenebrio larvae 
were provided weekly. 

The lighting conditions within the Adelaide 
colony, which were designed to optimise the breeding 
potential of the animals (Smith et al., 1978), consisted 
of 16 h daylight and 8 h darkness (L:D 16:8) for 
6 months, followed by a period of 3 weeks of L:D 
8:16 and then a return to the L:D 16:8 photoperiod 
(Bennett et al., 1982). After their arrival at UNE all 
animals were initially subjected to a photoperiod of 
L:D 12:12 (lights on 0600 h) for a period of 8 weeks 
before the photoperiod was changed. One group 
(N = 7) was then exposed to a photoperiod of L:D 
16:8 (lights on 0400 h) and the other (N = 7) to L:D 
8:16 (lights on 0800 h). After 8 weeks under long or 
short photoperiods, the photoregimes of the two 
groups were exchanged. Light in each chamber was 
provided by two 8 W fluorescent tubes which emitted 
a light intensity of approximately 100 lx (Gossen 
Panlux electronic light meter) throughout each 
chamber. 

Subsequent to 7 weeks’ acclimation at L:D 12:12, 
the length and breadth of testes were measured with 
vernier callipers (mean of three independent measure- 
ments) on a weekly basis. Body mass was measured 
at the same time and a ‘testes index’, which is 
length x breadth/body mass (Heath and Lynch, 
1983), was calculated. 

Metabolic rates (MR), measured as rate of oxygen 
consumption (*02), were determined over a 23 h 
period (_t 30 min), commencing in the late afternoon, 
at T, 12 k 1°C using an open-flow system. Food 
and water were not available to the animals for 
the duration of these measurements. Animals were 
placed within a 0.5 1 respirometry vessel and QOz was 
continuously monitored, after the removal of water 
from the air stream, with an Applied Electrochem- 
istry S-3A oxygen analyser connected to a Lloyd 
Instruments Graphic 2002 recorder. The flow rate 
was 350-450 ml min- ’ and was measured with 
calibrated rotameters. With this chamber size and 
these flow rates, 99% equilibrium was obtained 
between 5 and 6.5 min. T, was measured by a 
calibrated thermocouple placed within the respirome- 
try vessel. Photoperiods during measurements always 
matched those of the environmental chambers. 

The MR of normothermic resting animals (RMR) 
was determined during the photophase when a 
variation of less than 5% over 15 min occurred after 
an inactive period of at least 30 min; the MR of active 
animals (AMR) was derived from the maximum rate 
observed during the scotophase taken over a 30 min 
interval; the arousal peak was derived from the 
maximum rate, measured over at least 5 min, after a 
torpor bout; and the minimum MR of torpid animals 
(TMR) was determined when VO, was constant over 
at least 30 min (see Fig. 1). Animals were considered 
torpid when MR fell below 75% of the RMR at the 
same T, (Hudson and Scott, 1979). Duration of entry 
(75% RMR to steady state TMR), torpor bout (75% 
RMR to 75% RMR) and arousal (steady state TMR 
to 75% RMR) were derived from the measurements 
of VO?. For measurements of ADMR, 90, was 
integrated over the entire 23 h period using intervals 
of 10 min for calculations of the means. 

All gas volumes were corrected to STP and rates 
of oxygen consumption were calculated using 
equation 3a of Withers (1977). For mass-specific o02 
calculations, the animals were weighed before and 
after the experiments and body mass interpolated 
assuming a constant rate of loss. 

Mean values in the text and figures are shown f 
standard error (SE). Paired observations underwent 
an F,,, test to see if the variances were significantly 
different prior to being compared by a Student’s t-test 
for equal or unequal variances (Zar, 1984). Multiple 
observations were compared using a one-way analysis 
of variance (ANOVA) and the Tukey test (Zar, 1984), 
or Chi-square analysis. Straight lines were fitted using 
regression analysis (Minitab). Differences were 
assumed to be significant at the 5% level (P < 0.05). 
In the text and figures, N = number of individuals 
and n = number of observations. 
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Fig. 1. A typical set of records of metabolic rate measurements. Different physiological states are indicated 
by arrows. Metabolic rates for activity were derived from the maximum nocturnal rate over a 30 min 
interval, those during torpor from a constant minimum rate over at least 30 min, those during arousal 
from the maximum rate of at least 5 min after a torpor bout, and during rest from diurnal measurements 

which were fairly constant over at least 15 min. Horizontal bar indicates period of darkness. 

RESULTS 

Testes size was affected by photoperiod (Figs 2 
and 3). When subjected to L:D 16:8 the testes 
enlarged, reached a maximum size within 3-4 weeks 
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Fig. 2. Effects of photoperiod on mean testes size ( If: SE) 
in S. crassicaudata as a function of time. Measurements 
commenced following 7 weeks’ exposure to L:D 12: 12. The 
vertical lines indicate the time when photoperiods were 

exchanged. 

and subsequently remained at that level (Fig. 2). 
Regression of the testes occurred in those animals 
under L:D 8:16, and this was also completed within 
approximately 4 weeks. After 7 weeks’ acclimation to 
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Fig. 3. Effects of photoperiod on the mean size of testes in 
S. crussicauduru after 7 weeks’ acclimation to the three 
photoperiods. Number of individuals is shown above the 
columns. Testes size of those animals held under L:D 8:16 
were significantly smaller than those held under both L:D 
169 and L:D 12:12 (P < 0.001, ANOVA; P < 0.01, Tukey 

test). 
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Table 1. Summary of data on torpor occurrence and body mass in S. crassicauduta when exposed to different photoperiods 

Photoperiod N n Number torpid Number normothermic % Torpid Mass (g) 

L:D 12:12 13 41 28 13 68.3 16.5 f 0.5 
L:D 8:16 10 46 14 32 30.4 18.1 f. 0.8 
L:D 16:8 11 48 21 21 43.8 17.1 f 0.7 

P < 0.01 
Chi-square 

P > 0.2 
ANOVA 

Body mass (mean + SE) was measured prior to a night without food to try and induce torpor. N = number of animals; 
n = number of observations 

each photoperiod, testes size differed significantly 
between L:D 8:16 (37.40 f 1.22 mm’; N = 9), and 
both L:D 16:8 (48.74 f 1.21 mm’; N = 9) and L:D 
12:12 (47.85 f 2.42 mm*; N = 13) (Fig. 3; P < 0.001, 
ANOVA; P < 0.01, Tukey test). This alteration in 
testes size combined with the tendency for body 
masses to change under different photoperiods also 
resulted in a significant difference in the mean testes 
index between L:D 8:16 (2.09 &- 0.10 mm2 g-l), 
and both L:D 168 (2.88 f 0.12 mm’ g-l), and L:D 
12:12 (2.92 + 0.15 mm* g-‘) (P < 0.001, ANOVA; 
P < 0.01, Tukey test). The testes index of animals at 
L:D 8: 16 was 38 and 40% less than those at L:D 16:8 
and L:D 12:12, respectively. Testes size and mean 
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testes index of animals at L:D 16:8 and L:D 12:12 did 
not differ significantly (P > 0.05, Tukey test). 

Photoperiod also appeared to influence the number 
of animals entering torpor (Table 1; P < 0.01, 
Chi-square). However, this result was primarily due 
to the higher proclivity of the relatively light animals 
under L:D 12: 12 to enter torpor (Fig. 4) as there was 
no significant difference in torpor occurrence between 
animals at L:D 8:16 and L:D 16:8 (Table 1; P > 0.05, 
Chi-square). When all animals were compared, 
those that entered torpor had a significantly lower 
body mass than those that remained normothermic 
(Fig. 5; P < 0.001, t-test) and body mass and torpor 
occurrence were negatively correlated (Fig. 4; 
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Fig. 4. Relationship between body mass and occurrence of induced torpor (main graph). Occurrence of 
induced torpor at the three photoperiods is shown as a bar graph (inset). Number of individuals is shown 
above the columns. Animals held under L:D 12:12 entered torpor more frequently than those held under 
L:D 16:8 or L:D 8:16 (P c 0.01, Chi-square). Since torpor occurrence was negatively related to body mass 
(y = 229 x 10.4~; P < 0.001, r2 = 0.32), this result was due to the lower body mass of animals at L:D 12: 12. 
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Fig. 5. Relationship between the mean body mass, 
measured prior to entry into the metabolic chamber, of S. 
crussicaudata entering torpor (“torpid”) or remaining 
normothermic. Number of individuals is shown above the 
columns. Significant differences were observed when all 
animals were compared (**, P < 0.001, t-test), at L:D 12:12 
(**, P < 0.001, t-test) and L:D 8:16 (*, P i 0.02, t-test). 

P < 0.001, Y’ = 0.31). When body masses of individ- 
uals remaining normothermic at each photoperiod 
were compared with those entering torpor, the latter 
were significantly lighter at both L:D 12:12 (Fig. 5; 

P < 0.001, r-test) and L:D 8:16 (Fig. 5; P c 0.02, 
t-test) but not under L:D 16:8 (Fig. 5; P > 0.05, 
t-test). 

While testes size was affected by photoperiod, 
there were no significant differences between MRs in 
any of the metabolic states at long and short 
photoperiods (P > 0.05, r-test) (Fig. 6). TMR, 
0.43 i 0.12 ml g-’ h-’ (N = 6) at L:D 16:8 and 
0.36 & 0.07 ml g- ’ h- ’ (N = 5) at L:D 8: 16, was 
significantly lower (P < 0.001, t-test) than RMR, 
5.08+0.06mlg-‘h-’ (N = 8) and 4.93 + 
0.08 ml g-’ h-’ (N = 8) at L:D 16:8 and L:D 8:16. 
respectively, representing a 92-93% energy saving at 
each photoperiod. Torpor durations were highly 
variable (6.79 + 2.32 h (N = 6) at L:D 16:8 and 
3.55 + 1.24 h (N = 5) at L:D 8: 16), and were also not 
affected by photoperiod (Fig. 7). The times for torpor 
entry and arousal were very similar at the two 
photoperiods (Fig. 7). 

DISCUSSION 

The present study shows that torpor occurrence 
and patterns in S. crassicaudatu were not significantly 
affected by photoperiod. In contrast, testes size was 
affected by photoperiod. These observations suggest 

Fig. 6. Effect of photoperiods L:D 16:s and L:D 8:16 on 
metabolic rates, measured as rate of oxygen consumption, 
in S. crassicuudura at T, 12’C. Number of individuals is 
shown above the columns; ADMR = average daily 
metabolic rate. Photoperiod has no significant effect on any 

of the five metabolic states (P > 0.05, r-test). 

that the two physiological traits, although both are 
known to be seasonal, are controlled by separate cues 
and mechanisms. 

When held in outside pens S. crassicaudata 
displayed a number of seasonal changes in the 
pattern of thermoregulation and torpor (Geiser and 
Baudinette, 1987). The species showed a greater 
tendency to enter torpor and had lower TMR, body 
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Fig. 7. Effect of photoperiods L:D 16:s and L:D 8:16 on 
duration of torpor entry, torpor bout and arousal in S. 
crassicaudufa at T, 12’C. Number of individuals is shown 
above the columns. Durations of the three metabolic states 

were not affected by photoperiod (P > 0.05, t-test). 
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temperature (Th) and RMR in winter when compared 
to the values in summer. However, Geiser and 
Baudinette (1987) did not further scrutinise whether 
photoperiod or temperature or both were responsible 
for this seasonal change. Our study suggests that 
photoperiod, which in many species is the instigating 
factor in the timing of both torpor and reproduction 
(Heldmaier and Steinlechner, 1981; Goldman et al., 
1986; Steinlechner et a/., 1986) does not induce these 
seasonal changes in torpor patterns and that some 

other factor(s) must be involved. 
In the study of Geiser and Baudinette (1987) the 

animals were exposed to changes in both photoperiod 
and T,. It would therefore appear that an important 
stimulus for the seasonal change in thermoregulation 
and torpor patterns in this species is T,. However, it 
is also likely that food restriction acts as a major 
stimulus. as Morton (1978d) only observed torpid S. 
crassicaudata in the field at relatively moderate T,s of 
9-17’C, despite night-time T,s often falling below 
5 C, and concluded that the use of torpor in this 
species is a response to short-term food shortages. 
That food availability is an important factor is 
confirmed by laboratory studies where torpor can be 
induced through food deprivation (Godfrey, 1968; 
Frey, 1991; present study) and spontaneous torpor 
(food available) occurs only occasionally (Geiser and 
Baudinette, 1987). Therefore, it appears that in S. 
crassicauduta a combination of both low T, and food 
shortage acts as a stimulus for the use of torpor. 

Sminthopsis crassicaudata is a nocturnal species. 
Since the period of activity is prolonged under a 
short photoperiod, and consequently long nights, 
one might expect an increase of ADMR as torpor 
frequency and TMR were not affected by photo- 
period. However, ADMR was similar at both short 
and long photoperiods. Therefore, it appears that S. 
crassicaudata can balance its ADMR by reducing the 
intensity of its activity during short photoperiods 
(Holloway and Geiser, 1996) rather than having to 
change their pattern of torpor. 

The direct response of the adult male testes to the 
changes in photoperiod in the current study indicates 
that the seasonal timing of this species’ reproductive 

cycle is controlled by photoperiod. This is supported 
by the observations that females can be stimulated 
into oestrus with increased daylength (Godfrey, 1969; 
Smith er a/., 1978) and males sire more litters if they 
are subjected to a period of short days when 34 
months old (Bennett et al., 1990). Further, absolute 
length of photoperiod or possibly an increasing 
photoperiod, rather than the rate of change of 
photoperiod. as has been found in the related 
Antechinus stuartii (McAllan and Dickman, 1986) 
appears to control reproduction in S. crassicaudata. 

In the wild, pregnancies have been observed as early 
as the last week of July (short photoperiod), although 
the majority occur during August and September 
(approximately L:D 12:12) (Morton, 1978~). There- 
fore, with a gestation period of 13-16 days (Smith 
et al., 1978), times of conception must occur from 
early July onwards. Consequently, males probably 
respond to a critical photoperiod length, or increase 
in photoperiod, soon after the winter solstice. The 
onset of oestrus in female S. crassicaudata within the 
laboratory also coincides with the winter solstice 
(Godfrey, 1969) which supports our interpretation. 

In many rodent species it appears that torpor and 
reproduction are mutually exclusive (Heldmaier and 
Steinlechner, 1981; Goldman et al., 1986; Steinlech- 
ner et al., 1986). In these species it has been observed 
that high concentrations of steroid hormones, such as 
testosterone, inhibit the incidence of torpor (Gold- 
man et a/., 1986). Consequently, it has been proposed 
that the pineal gland, stimulated by short photo- 
periods, initiates production of antigonadotrophic 
hormones that cause atrophy of the reproductive 
organs and consequently allow the species to enter 
torpor (Hoffmann, 1973; Reiter, 1975, 1981). While 
the effects of the concentration of sex hormones on 
torpor have not been investigated in marsupials, 
the mutual exclusiveness of torpor and reproduction 
that is seen in many rodent species is not apparent 
in S. crassicaudata, with torpor occurring in both 
reproductive and non-reproductive individuals (Mor- 
ton, 1978d; present study). In addition, a number of 
other species, from all three mammalian subclasses, 
have now been observed to display torpor during 
their reproductive season. These include a 
monotreme. Tachyglossus aculeatus (Geiser and 
Seymour, 1989); two marsupials, Dasycercus cristi- 
cauda (Geiser and Masters, 1994) and Acrobates 
pygmaeus (Frey and Fleming, 1984); and within the 
placental mammals, the tenrec, Geogale aurita 
(Stephenson, 1994) and several bat species (Racey, 
1973; Audet and Fenton, 1988). 

Geiser and Masters (1994) have suggested that 
these differences in the reproductive patterns between 
the two groups may be due to two factors: (i) length 
of development and parental care, with those species 
observed to go into torpor while reproductively active 
all having a relatively long gestation/lactation period 
compared with rodents, and (ii) food source, with 
rodents tending to be herbivore/granivores while the 
groups which display torpor during the reproductive 
season are all insectivorous/nectivorous ~ food 
sources which may be prone to large fluctuations in 
abundance. 

Male hibernating ground squirrels arouse several 
weeks before their female counterparts and Barnes 
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(1996) proposed that this is so that spermatogenesis 

can proceed. In addition, if the animal returns to 
hibernation before the testes have fully matured, 
gonadal regression occurs (Barnes et al., 1986). This 
is in contrast to S. crassicauduta which appear able 
to maintain fully developed testes despite periodically 
entering torpor. One reason for the difference may be 
due to the body temperature of the animals during 
torpor. Ground squirrels drop their T,s during 
hibernation to as low as 0 to -3°C (Barnes, 1989; 
Geiser et al., 1990). which is considerably lower than 
the minimum T, of approximately 15’C of S. 
crassicaudata during daily torpor (Holloway and 
Geiser, 1995). Since testicular development does 
not appear to proceed at low T,s (Barnes, 1987). 
spermatogenesis may only be slowed in S. crassicau- 

data but may completely cease at the near freezing T,s 
of ground squirrels. Another factor that could affect 
sperm production is the duration of the torpor bouts. 
In S. crassicaudata torpor bouts last only a few hours, 
while in ground squirrels the torpor bouts, and 
consequently the low tissue temperatures, last for 
several days. 

Only male S. crassicauduta were used in this study 
because energy allocations for reproduction are much 
less for male (spermatogenesis) than for female 
(gestation and lactation) mammals. This is unlike the 
situation which occurs in many bird species where the 
responsibilities, and thus energy costs, for incubation 
and brooding are shared, thus precluding both males 
and females from entering torpor during the 
reproductive season (Csada and Brigham, 1994). In 
reproductively active mammals the use of torpor 
appears to differ between the sexes (Grinevitch et al., 

1995). It is, therefore, possible that some of the 
short-term benefits gained from the use of torpor in 
reproductively active female mammals are out- 
weighed by the long-term costs of a prolonged 
gestation and a slowed neonatal growth (Racey, 
1973; Audet and Fenton, 1988; Grinevitch et al., 

1995). For males though, while torpor may slow 
spermatogenesis (Kurta and Kunz, 1988), it seems 
that the energetic benefits outweigh any costs and, 
consequently. males may frequently use torpor 
during the reproductive season (Grinevitch et al., 

1995; present study). It should be noted, however, 
that while torpor occurrence in reproductive females 
may not be as prevalent as in reproductive males 
(Grinevitch et al., 1995), it has been recorded in a 
number of species (Frey and Fleming, 1984; Geiser 
and Seymour, 1989; Geiser and Masters, 1994), 
including one report of a torpid female S. 
crassicaudata with six young (Morton, 1978d). 

Since reproduction is generally timed to coincide 
with the period when offspring survival is most 

favoured, most species time the births of their litters 

so that weaning will occur in spring and summer, the 
seasons when food is usually most prolific. Many 
rodents are able to maintain strict homeothermy 
throughout their short reproductive season because 
they are able to begin their breeding season at a time 
when it is warm and food is plentiful. For small 
marsupials, on the other hand, with their long periods 
of developmental and parental care, pregnancy and 
lactation often begin in winter, at a time when T,s and 
food availability are low. Consequently, animals 
using this strategy may need to reduce their T, and 
metabolism, by entering torpor. to ensure they 
survive the reproductive season. 
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