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i. Introduction

It is well known that in the presence of heteroscedasticity of error

variances, the least squares method has two major drawbacks: (i) ineffi-

cient parameter estimates and (ii) biased variance estimates which make

standard hypothesis tests inappropriate. The importance of tests for

heteroscedasticity is well recognized and a large number of tests have

been proposed. There are test procedures for establishing a specific

form of heteroscedasticity, and a wide range of tests for detecting only

the presence or absence of heteroscedasticity. See, for example, Goldfeld

and Quandt (1965), Rutemiller and Bowers (1968), Glejser (1969) t Ramsey

(1969), Theil (1971), Harvey and Phillips (1974), Harvey (1976), Bickel

(1978), Szroeter (1978), Breusch and Pagan (1979), Harrison and McCabe

(1979), White (1980), Carroll and Rupert (1981), King (1982), Barone-Adesi

and Talwar (1983), Buse (1984), Ali and Giaccotto (1984), Evans and King

(1985), and Judge et al. (1985, Chapter ii). The various tests proposed

by these authors have been well reviewed in the last three listed

references, and so a further review will not be attempted here. We are

concerned with evaluating a computationally simple asymptotic test which

was proposed by Szroeter (1978) and which appears to have been overlooked

in the studies listed above. This test, originally designed for structural

and reduced form relations in dynamic simultaneous equation models can,

under appropriate assumptions, also be used to test for heteroscedasticity

in linear regression models. A finite sample version of the test was shown

by King (1982) to be approximately locally best invariant under quite

general conditions and its power has compared favourably with that of a

number of other test procedures [Evans and King (1985)]. However, because

the critical value of the finite sample version of the test depends on the



set of regressors, this test is computationally demanding and unlikely to

be computed routinely in standard econometric computer packages. In

contrast, routine calculation of the asymptotic test could easily take

place, in much the same way as the Durbin-Watson statistic is routinely

computed to test for autocorrelation. See Harrison (1980) for a discussion

on the relative computational ease of a large number of tests for

heteroscedasticity.

We have chosen to compare Szroeter’s asymptotic test with three

others - the Goldfeld-Quandt test [Goldfeld and Quandt (1965)], the

Breusch-Pagan test [Breusch and Pagan (1979)], and BAMSET [Ramsey (1969)].

The Goldfeld-Quandt (G-Q) test has been chosen because it appears to be

the most popular test in applied econometrics and its performance has been

found to be satisfactory in many of the earlier studies. The Lagrange

multiplier (LM) test proposed by Breusch and Pagan (B-P) is also popular

and is simple to compute. It, too, has been found to be quite powerful

in the presence of heteroscedasticity.    The test BAMSET has been included

following a suggestion from a referee that its performance is likely to be

less sensitive to the assumption that, under the alternative hypothesis of

heteroscedasticity, the observations can be ordered according to increasing

variances.

Monte Carlo methods are used to examine the four test procedures for

two different heteroscedastic variance structures with varying degrees of

heteroscedasticity, and for small and large samples. Our results indicate

that when it is possible to order the observations according to increasing

variances, Szroeter’s test is more powerful than the remaining three.

When the observations have not been ordered the performances of Szroeter’s

test, BAMSET and the G-Q test all fall dramatically and, as hypothesized

by the referee, BAMSET is better than the other two. The B-P test does



not depend on whether or not the observations are ordered, but does depend

on similarly strong prior information. Details of the variance

specifications and the tests are given in section 2. The set-up of the

Monte Carlo experiment and the results are presented in sections 3 and

4, respectively.

Variance Structures and Tests for Heteroscedasticity

Consider a linear regression model

Yt = Xt8 + ut’ t=l,2, ..... T, (i)

where Xt = (l,xt) contains the constant term and the t-th observation on

an explanatory variable, Yt is the t-th observation on a dependent

variable, 8 is a (2 × i) vector of parameters, and the ut are unobservable

normal random errors with mean zero and variances as specified below. We

restrict 8 and Xt to be of dimension 2 because this is in line with the

design of our Monte Carlo experiment, not because it is necessary for

carrying out the tests. Two types of variance structures are considered.

The first specification is

V(ut) = ~2t = exp(Zt~) = kxXt, (2)

where Zt = (i, log xt), and 6 = (log k,x)’    This model has been

discussed by Geary (1966), Park (1966), Lancaster (1968), Kmenta (1971),

and Harvey (1976), and, following Harvey, we shall refer to it as the

multiplicative heteroscedastic model. The second variance assumption is

2       2 2        2
V(ut) = ot = (Xta) = a0(I + Ixt)

(3)

where a = (a0,al)’, I = ~i/~0 and Xt = (l,xt). This model has been



studied by Rutemiller and Bowers (1968), Glejser (1969) and Harvey (1974)

and we will refer to it as the additive heteroscedastic model.

We shall now briefly describe the four tests°

Szroeter’s Test

To begin we assume that in model (i) the exact form of the variances

(o~) may not be known but that all the observations can be arranged in

2     2
~ ot t=2 3,...,T. This can be done either withsuch a way that ot_1 , ,

reference to certain exogenous variables appearing in our model (xt in our

case), or on the basis of predictive values of Yt based on OLS estimates.
^              ^

If et = Yt - XtS’ where 8 is any consistent estimator of 8, the test

statistic is defined by

Q = T(h - ~)/    (ht - ~) ½ (4)

where h = 7.twtht,
2 2

wt = et/7~tet, ~ = T-iZtht, and ht is a set of T

nonstochastic scalars having the property that ht ~ hs if t > s.

2 2
Under the null hypothesis H0: ot = °t-l’ t=2,3,...,T against the

2 2
alternative hypothesis HI: ~t > ~t-l’ Q follows a limiting normal

distribution with mean zero and variance unity°

If we let ht = t, t=l,2,...,T, the test statistic can be written

as

(5)

where ~
2     2

= Ettet/Ztet. The test statistic (5) is very simple to compute,

and, because it is asymptotic N(0,1), the test is easy to apply. The

observations for models (2) and (3) can be arranged according to

increasing variances by arranging the x’s in ascending order° Also, for



h we will use the residuals from the OLS estimator for 8. Note that Q

will be the same for both multiplicative and additive heteroscedasticity.

We will refer to this test as the SZ test.

Breusch-Pagan Test

This test is based on Silvey’s (1959) LM test and was developed

independently by Godfrey (1978) and Breusch and Pagan (1979). The test

statistic for models (2) and (3) can be developed as follows.
^

Let ut be the OLS residual for the t-th observation for the model
^2     -i ^2

(i), let the estimated residual variance be ~ = T Ztut, and define r

as a vector with typical element rt 
= (~/~2 i). Then, the LM statistic

is

LM ~r’Z(Z’Z)-Iz’= r, (6)

where Z is a (T × 2) matrix with t-th row given by Zt = (i, log xt) for

the multiplicative model and Zt = (I, xt) for the additive model~

Under the null hypothesis of homoscedasticity, LM in (6) is

2
distributed as × (1) " (If Zt was of dimensicn p, then LM would follow a

2 distribution.) Because the test statistic for the multiplicative× (p-l)

model is based on Zt 
= (i, log xt) and for the additive model on

Zt = (i, xt) we will have two LM tests. The first we refer to as the

Breusch-Pagan multiplicative [B-P(M)] test, and the other will simply be

referred to as the Breusch-Pagan (B-P) test.

The Goldfeld-Quandt Test

The test proposed by Goldfeld and Quandt (1965) is carried out as

follows.

(i) Arrange all the observations according to increasing variances

as in Szroeter’s test.



(ii)    Discard ’c’ central observations and fit two separate

regressions to each of the remaining (T-c)/2 observations.

(iii) Obtain S1 and S2, the residua! sums of squares from the

regressions fitted to the first and last (T-c)/2 observations.

(iv)    Under the null hypothesis of homoscedasticity the statistic

R = S2/S1 has an F-distribution with [(T-c-4)/2, (T-c-4)/2] degrees of

freedom.

In our experiments where we used sample sizes of T = 20 and 50 we

set c = 4 and I0, respectively.

BAMSET

The version of the test BAMSET [Ramsey (1969] which we employed is

given by

3^2    T- 2            2
BS = (T - 2)log ~ 3 Z log s.

1
i=l

(7)

^2 -i T ^2    2 ^2 and the ut are thewhere ~ = (T - 2) Et=lUt, s.l = (3/(T- 2))Zt~s.Ut,
1

OLS residuals. Note that, for our settings of T, (T - 2)/3 is an integer.

The sets of observations used to define the three residual groups are as

follows. For T = 20, S1 = {1,2 .... ,7}, S2 = {8,9, .... 13}, S3 = {14,15 .... ,20}.

For T = 50, S1 = {1,2, .... 17}, S2 = {18,19, .... 33}, S3 = {34,35, .... 50}.

Under the null hypothesis of homoscedasticity BS is treated as an asymptotic

2 random variable.
X(21

Other versions of this test can be constructed depending on the number

of the groupings and whether alternative sets of residuals such as BLUS

[Theil (1971)] or recursive [Harvey and Phillips (1974)] are used in place

of OLS residuals. Our choice of three groups was based on Ramsey’s

recommendation; OLS residuals were chosen because of their computational



ease and their apparent superiority in experiments conducted by Ramsey

and Gilbert (1972) and Ali and Giaccotto (1984).

An important characteristic of each test is the amount of prior

information required concerning the type of heteroscedasticity under

the alternative hypothesis. The SZ test assumes the observations can

be ordered according to increasing variances. The G-Q test makes a

similar assumption, or at least that the observations can be placed into

two groups - one containing observations with potentially high variances

and the other containing observations with potentially low variances.

The B-P test requires knowledge of the explanatory variables upon which

the variances depend. With one explanatory variable such prior information

is similar to that required by the SZ and G-Q tests. With more than one

explanatory variable the B-P test requires relatively less prior

information because a decision about the relative importance of the

different explanatory variables is not needed.

Ideally, the observations should also be ordered for BAMSET. However,

relative to SZ and G-Q, we would expect the decline in power of BAMSET to

be less sensitive to an inappropriate ordering. This hypothesis was

tested by estimating the power of SZ, G-Q and BAMSET for both ordered and

unordered observations. The performance of B-P does not, of course, depend

on the order of the observations.

3. Set-up of the Monte Carlo Experiment

Throughout the experiment 8 was set at 8 = (80,81)’ = (i0,i)’    Two

different sample sizes T = 20 and T = 50 were considered; and the xt’s

were initially generated from two different distributions, uniform and

lognormal, and were then held fixed in repeated samples. The lower and

upper parameters of the uniform distribution were respectively, 20 and

qt
i00;    in the    lognormal case, the xt s were found from xt e , where



the qt s were generated from N(3.8, 0°42)° Five thousand replications

were generated for each combination of sample size, regressor type and

error variance model. The ut’s were drawn from a normal distribution

with mean zero and variances given by (2) and (3) for the m111tiplicative

and additive models, respectively° The severity of the heteroscedasticity

was controlled by varying the parameters ~ and l; we considered 18 values

of i between 0 and 2.0, 55 values of y between -7 and 7, and an additional

6 values of ~ equal to i0, 50, I00, 500, i000 and 5000~ For negative

values of ¥ the observations were ordered according to decreasing rather

than increasing values of xt. The powers of all five tests~ SZ,

B-P(M), G-Q, and BAMSET were estimated by calculating the proportion of

rejections in 5000 replications at a 5% level of significance°

4. Results

A convenient measure of the degree of heteroscedasticity which was

suggested by Surekha (1980), and later used by Evans and King (1985), is

the coefficient of variation of the variances (C of V). This measure is

invariant with respect to the units of measurement of the variables and,

for a given x-vector (lognormal or uniform), it turns out to be the major

determinant of the powers of the tests. In Table 1 we have presented the

estimated powers of the tests for some selected values of I and 7 which

lead to similar values of the C of Vo Whether or not the heteroscedasticity

is multiplicative or additive has little bearing on the power of each test

when the x-vector is the same and the C of V~s are similar° In fact, in

the last four rows of the Table the powers are identical for identical

C of V’so This result generally held throughout, although there were some

instances where there were very slight differences in the powers for

identical C of V’so



Another result illustrated by Table 1 is that, for a given C of V,

the power of each test is greater for uniform x than for lognormal x.

This result also held throughout, except for a few cases when the C of

V was less than 0.3.

Considering negative values of ~ for the multiplicative model is

equivalent to considering two more types of x for that model - one which

is the inverse of uniformally distributed x, and one which is the inverse

of lognormally distributed x. A general comparison of these results with

those for ¥ > 0 showed that the powers of the tests for y > 0 tended to

be greater than the powers of the corresponding tests for ~ < 0 and

similar C of V’s.

When I was increased from 50 to 5000 the C of V’s and the powers of

the tests did not change, suggesting that there is an upper bound to the

degree of heteroscedasticity (C of V) which can be modelled using the

additive specification. Investigating this matter further, we considered

the square of the C of V defined by

2

(C of V) 2 = Z°t (8)

2
Substituting for o

t
from (3) and taking limits yielded

= T-I          2                                                (9)
( ~x2t)

Thus, there is indeed an upper bound to the degree of heteroscedasticity

which can be modelled with an additive heteroscedastic specification. A

similar exercise applied to the multiplicative specification yielded an



i0o

upper bound of

T2 (I0)

Thus, there is also a limit to the degree of heteroscedasticity which

can be modelled using a multiplicative specification, but in our

experiment we did not consider values of y sufficiently large for the

results to show any evidence of such a limit° Table 2 indicates the

maximum C of V’s (square roots of (9) and (i0)) obtainable for the data

in our experiment, as well as the largest     C of V’s that we considered

for the multiplicative model (y > 0) o Note that the upper bound for the

multiplicative model does not depend upon whether or not the x’s are

uniform or lognormalo It is evident, both from Table 2 and a comparison

of (9) and (i0), that the maximum degree of heteroscedasticity which can

be modelled using the additive specification is much less than that

achievable using the multiplicative specification° With the additive

specification the maximum degree of heteroscedasticty is not sufficient~

even when T = 50, for the power of any of the tests to become unity. See

Table io In contrast, with the multiplicative specification and T = 50,

the powers of all tests have reached unity for C of V = 1.81 with lognormal

x, and for C of V = 1.24 with uniform x; these values are well below the

upper bound of 7°07° These findings clearly have general implications for

heteroscedastic error model specification.

We turn now to a discussion of the sizes and relative powers of the

five tests° With respect to the sizes~ we first note that for a

proportion of 0°05, and 5000 replications, the standard error of an

estimated proportion is 0o0031o With T = 50 and the homoscedastic case

(~ = y = 0), all estimated proportions were within the range 0.05 ± 0°0062,



ii.

although the B-P and B-P(M) tests, with sizes of 0.047 and 0.044 for

uniform x and 0.044 and 0.045 for lognormal x, were at the low end of

this range. In contrast, with T = 20 only the finite sample G-Q test

had an estimated size within the specified confidence interval. All

the asymptotic tests (SZ, B-P, B-P(M) and BAMSET) had finite sample

sizes well below the specified 5% significance level. These sizes

ranged from 0.031 for SZ and BP with lognormal x to 0.038 for BAMSET

with uniform x. Similar results for the B-P test were reported by

Godfrey (1978) and Breusch and Pagan (1979).

As mentioned earlier, the relative powers of the various tests are

likely to depend heavily on whether or not the observations have been

ordered according to increasing variances. In Figures 1 to 4 we have

graphed the powers for both ordered and unordered observations for the

multiplicative model with lognormal x and ¥ > 0. These powers are graphed

against the C of V since it is a reasonable measure of the degree of

heteroscedasticity, and the results for additive heteroscedasticity (and

lognormal x) are essentially identical, except that they do not extend

beyond C of V’s greater than 0.70 (T = 20) or 0.62 (T = 50). We have

not presented the results for ~ < 0 and uniform x because these cases led

to identical conclusions about the r~tiue power8 of the tests.

From Figures 2 and 4 we observe that, when the observations have

been ordered according to increasing variances, the SZ test is most

powerful, followed by the G-Q test, the B-P and B-P(M) tests (which are

very similar), and BAMSET. For T = 20 the G-Q test is better than SZ

for low and high C of V’s, although the difference in performance at the

low end seems to occur because SZ has incorrect finite sample size.

Figures 1 and 3 show the powers of the SZ, G-Q and BAMSET tests

when the observations have not been ordered according to increasing



variances. The powers are very similar, and very poor, for C of V’s

up to 0.6. After this point BAMSET is clearly best since its power

[unction begins to rise more steeply while the other power functions

only gradually increase (T = 50), or ~ (T = 20). With uniform x

(which we have not graphed), the performance of BAMSET was similar,

but the power functions of SZ and G-Q gradually increased for T : 20 and

fell for T = 50. These results, and an examination of the x-vectors,

showed that whether the powers of the SZ and G-Q tests increased or

remained below their size did not depend on sample size but rather on the

distribution of the unordered x’so

5. Conclusions

If it is impossible to order the observations according to increasing

variances, and there is insufficient prior information to relate the

variances to some explanatory variable(s), then from the tests that we

have considered, only BAMSET is viable. However, its power is extremely

poor when compared with that which can be achieved, by any of the tests,

if the observations are appropriately ordered° Such an ordering leads to

a clear prescription for Szroeter’s test. Given the ease with which both

Szroeter’s test and BAMSET can be computed, and given their respective

superior performances under circumstances of some and no prior information

about variances, we feel that serious consideration should be given to the

routine calculation of both these statistics.

The maximum degree of heteroscedasticity which can be modelled using

an additive heteroscedastic specification is much less than that which can

be achieved using a multiplicative heteroscedastic specification. Due

consideration should be given to this fact when choosing a variance model

for estimation purposes°
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Footnotes

*The authors gratefully acknowledge Shahidur Rahman’s efficient
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Table 1

Powers of tests for selected models and parameter values

Tests

Modela     Param C of V SZ GQ BP BPM

AL I=.04 .410 ¯534 .464 .416 .400

ML 7=1.35 .416 .557 .489 .429 .421

AO I=.03 .412 .597 .541 .470 .444

MU 7=1.25 .406 .591 .536 .461 .446

AL I=500 .619 .819 .764 .703 .718

ML 7=2 .619 .819 .764 ¯703 ¯718

AU I=500 .608 .887 .847 .800 .812

MU 7=2 .608 .887 .847 .800 .812

BMSET

.275
¯ 294
.345
.343

.568

.568

.692
.692

aThe code for model type is M: multiplicative, A: additive,
U: uniform and L: lognormal
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Table 2

Maximum coefficients of variation of the variances

Model

AL (I>50) AU (I_>_50) M (Max) ML (%,=7) MU (y=7)

T=20 0o 70 0.67 4.47 2.25 1.69

T=50 0.62 0.61 7.07 2.06 i. 54
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