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Abstract. Faecal hormone monitoring offers a robust tool to non-invasively determine the physiological stress

experienced by an individual when faced with natural or human-driven stressors. Although already quantified for several
species, the method needs to be validated for each new species to ensure reliable quantification of the respective
glucocorticoids. Here we investigated whether measurement of faecal glucocorticoid metabolite (fGCM) provides a

feasible and non-invasive way to assess the physiological state of sugar gliders (Petaurus breviceps), an arboreal marsupial
native toAustralia, by using both a biological and physiological validation. Our analysis confirmed that the cortisol enzyme
immunoassay (EIA) was the most appropriate assay for monitoring fGCM concentrations in sugar gliders. Comparing the

fGCM response to the physiological and the biological validation, we found that while the administration of ACTH led to a
significant increase in fGCM concentration in all individuals, only six of eight individuals showed a considerable fGCM
response following the biological validation. Our study identified themost appropriate immunoassay formonitoring fGCM

concentrations as an indicator of physiological stress in sugar gliders, but also supports recent suggestions that, if possible,
both biological and physiological stressors should be used when testing the suitability of an EIA for a species.

Additional keywords: ACTH challenge, faecal glucocorticoid metabolites, individual variation, physiological stress,
separation.
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Introduction

Monitoring adrenocortical activity in wild animal populations is
critical given the well-documented relationship between stress,
health and reproduction (Tilbrook et al. 2000; Romano et al.

2010). When an animal is experiencing stress such as unpre-
dictable environmental changes, a main component of the
body’s response is the activation of the hypothalamic–pituitary–

adrenal (HPA) axis, which results in the increased production
and secretion of glucocorticoids (GCs) into the bloodstream
(Sapolsky et al. 2000).

Based on the ‘reactive scope model’ the increase in GCs
(cortisol or corticosterone) can be seen as a mediator of the
allostatic load and are a way for the individual to achieve

homeostasis again, often through adjustments in metabolism,
energy availability, cardiovascular activity and behaviour
(Moberg 2000; Romero 2002; Romero et al. 2009). Although

this response can be beneficial when it comes to circadian or
seasonal variations (predictive homeostasis) as well as short-term
disturbances (reactive homeostasis), chronically elevated GC
secretion, also described as ‘homeostatic overload’, may lead to

a suppression of the immune system and reproductive activities,
muscle atrophy and a shortened life span (Sapolsky 2002;
Charmandari et al. 2005; Cohen et al. 2007; Romero et al. 2009).

Due to the role GCs play in this response, and the numerous
deleterious effects that homeostatic overload, i.e. chronically
elevated GCs, can have on an individual, they are often used as a

physiological marker for the level of stress experienced and
welfare of an individual. Thus, physiological measurements of
stress hormones are often used to estimate the consequences

of natural or human-induced change in ecological studies of
various animals. Non-invasive hormonemonitoring has become
a reliable technique for assessing physiological stress in a range

CSIRO PUBLISHING

Australian Mammalogy, 2020, 42, 176–184

https://doi.org/10.1071/AM18044

Journal compilation � Australian Mammal Society 2020 www.publish.csiro.au/journals/am



of wildlife species (Creel et al. 2013). Because glucocorticoids

(active molecule) circulating in the bloodstream are processed
by the liver and excreted via the bile as GC metabolites (Touma
and Palme 2005; Sheriff et al. 2011), GCs can bemonitored non-

invasively by collecting excreted faecal material (Hodges et al.
2010). Although non-invasive faecal glucocorticoid metabolite
(fGCM) monitoring has some shortcomings, such as the inabil-
ity to monitor short-term stressors or the need to determine the

time of fGCM excretion relative to the applicable stressor
(Touma and Palme 2005; Heistermann 2010), it is often chosen
above invasive blood collection techniques for several reasons.

For example, there is little to no need for animal capture,
restraint or anaesthesia to collect faeces, which decreases animal
contact and potentially dangerous consequences to animal or

collector health (Behringer and Deschner 2017). As a result of
the ease of collection, longitudinal sampling can be conducted
from captive and free-ranging animals. Another inherent advan-
tage of using faecal material to monitor adrenocortical function

is the ability to monitor free (non-protein bound) GCs that are
excreted via faeces. This method is often classified as more
relevant than looking into the amount of total GC level in blood

samples, as only free GCs are able to reach the target organs and
invoke the necessary physiological changes in response to a
stressor (Palme et al. 2005; Sheriff et al. 2011).

Before a specific assay can be used to monitor fGCM con-
centrations in a particular species, it is important that the method
has been carefully validated either physiologically or biologically

to ensure that the assay can monitor biologically meaningful
differences (Palme 2005). Physiological validation refers to the
artificial activation, through the injection of synthetic adrenocor-
ticotrophic hormone (ACTH), of the HPA axis and the ability

to monitor the resulting change in fGCM concentrations
(ACTH challenge test). Where a physiological validation cannot
be performed (e.g. when working with critically endangered

or intractable species), biological validations (e.g. handling,
constraint, blood collection, transportation and/or agonistic
interactions) should be conducted (Bosson et al. 2009; Rimbach

et al. 2013). Although biological validations are often employed
as part of the validation process, individual variation in the stress
response towards specific stressors may lead to inconsistent and

varying results (Koolhaas et al. 2010). Thus, to ensure the most
appropriate enzyme immunoassay is used to quantify physiolog-
ical stress in a species,many authors highlight the need to conduct
both a physiological and biological validation on the chosen

study species (Goymann et al. 1999; Sheriff et al. 2011).
Recent studies have demonstrated a dramatic decline in

Australian wildlife as a result of anthropogenic activities such

as the introduction of exotic species, the reduction or fragmen-
tation of vegetative cover, as well as a change in fire regimes and
climatic variables (Burbidge and McKenzie 1989; McKenzie

et al. 2007; Hing et al. 2014). Despite evidence that chronic
stress has significant welfare implications, studies focusing on
the possible effects of such stressors on the adrenocortical
activity have been conducted on only a few Australian marsu-

pials (Hing et al. 2014). In this regard, non-invasive hormone
monitoring techniques using hair as hormone matrix have been
successfully applied to determine adrenocortical function in

squirrel gliders (Petaurus norfolcensis) faced with anthropo-
genic disturbances (Brearley et al. 2012).

The sugar glider (Petaurus breviceps) is a small arboreal

marsupial native to Australia and currently listed as of least
concern by the International Union for Conservation of Nature
(Salas et al. 2016). Sugar gliders are a social species known to

form groups consisting of several individuals and are frequently
found in large huddling groups (Suckling 1984; Nowack and
Geiser 2016). They are well adapted to survive short-term
changes in their environment (Henry and Suckling 1984; Körtner

and Geiser 2000; Parmesan et al. 2000; Christian and Geiser
2007).However, chronic or extreme changes in temperature, food
availability and habitat loss may lead to energetic bottlenecks as

well as changes in foraging behaviour and reproduction. Validat-
ing a method for monitoring physiological stress in the species
may assist in determining sugar glider health and survivability

throughout its natural distribution during such periods of change.
Here we used both a biological (separation) as well as physiologi-
cal (ACTH administration) validation to assess the suitability of
five enzyme immunoassays (EIAs) thatwould allownon-invasive

monitoring of physiological stress of captive and free-ranging
sugar glider populations via the collection of faecal samples.

Material and methods

Ethical note

Approval to conduct this study was granted by the University of
New England Animal Ethics Committee and the New South

Wales National Parks and Wildlife Service (AEC14-108).

Capture and housing

The experiment was performed in February 2014 on eight sugar
glider individuals (five adult females, two adult males, one

subadult male) originally retrieved fromwooden nest boxes near
Dorrigo (308220S, 1528340E) and within Imbota Nature Reserve
(308350S, 1518450E, Australia) (a group of four animals per

location). The individuals were transferred to the University of
New England, Armidale, Australia, where they were used to
establish a breeding colony, which was used during this study.

All individuals were weighed to the nearest 0.1 g, sexed and aged
according to Suckling (1984), before being micro-chipped for
individual recognition (PIT tags, Destron Technologies, South

St Paul, MN, USA). Animals were kept in their capture groups
and housed in two outdoor enclosures (3.6 � 1.8 � 2 m), each
fitted with branches, two feeding platforms and three wooden
nest boxes per group. All individuals of one group usually shared

one nest box (Nowack and Geiser 2016). Following a physical
evaluation, all animals were deemed healthy at the start of the
study. Individuals were removed from their group housing in the

late afternoon (start of active period) on the first day of the study
and placed into individual enclosures (0.7 � 1 � 2 m) for the
study period: individuals were able to have visual and olfactory

contact with one or two other members of their family group
situated in close-by aviaries. Each individual enclosure was
equipped with a wooden nest box and branches; the floor of the
enclosure was lined with shade cloth to captured faeces while

allowing urine to drain off.Animalswere fed dailywith amixture
of high protein baby cereal, egg, honey andwater, towhich a high
protein supplement (Wombaroo Food Products, Glen Osmond,

SA) was added. This food was supplemented with a dish of fresh
fruits. Water was provided ad libitum.
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Separation, ACTH challenge and faecal sample collection

In total, faecal samples were collected for eleven nights

including separation (Day 1), five nights where no animal
manipulation occurred, ACTH administration on Day 7, and for
four nights after the treatment. After both separation and ACTH

injection, enclosures were checked for faecal samples at 2-h
intervals from 2100 hours to 0600 hours. The freshest sample
was collected and all other faecal samples were removed from
the enclosure and discarded. For all other nights, enclosures

were checked at the start and end of the active period (2100
hours through to 0600 hours the next day; the same sampling
procedure as described above was used). Samples were marked

according to the date and time of collection to allow for
longitudinal fGCM monitoring. On Day 7, all eight individuals
were injected intramuscularly with 0.1 mL of synthetic ACTH

(1–2 IU/kg of Synacten Depot, Novartis, Auckland, NZ) at the
start of the active phase between 1925 and 2000 hours then
released back into their individual enclosures. This ACTH dose

was chosen as it has been used successfully in several studies to
invoke a stress response, such as the African lesser bushbaby
(Galago moholi, Scheun et al. 2015), yellow baboons (Papio
cynocephalus, Wasser et al. 2000) and the black-footed ferret

(Mustela nigripes, Young et al. 2001). All faecal samples were
stored in 1.5 mL Eppendorf tubes and frozen at –208C within
20 min of collection. At the end of the experiment, all indivi-

duals were relocated into their original groups.

Faecal sample extraction

Faecal samples were lyophilised, pulverised and sieved through a

thin mesh to remove any undigested material (Fieß et al. 1999).
Following this, 0.050–0.055 g of faecal powder were extracted
by adding 1.5 mL 80% ethanol before vortexing for 10 min.

Suspensions were then centrifuged for 10 min at 1500g and the
supernatants transferred into a new microcentrifuge tube. Cen-
trifugation of the supernatantswas repeated at 1500g for 5min and

the resulting supernatants transferred into new microcentrifuge
tube. Subsequently, 1 mL of supernatant was dried in an oven at
508C overnight; the dried product was sent to the Endocrine
Research Laboratory (ERL), University of Pretoria, South Africa,

for EIA analysis. At the ERL, dried samples were reconstituted
with 1 ml assay buffer and stored at –208C until EIA analysis.

Enzyme immunoassay analysis

To determine an appropriate EIA for measuring alterations in
fGCM concentrations in sugar gliders, a subset of faecal extracts
from two males (Male1, Male2) and two females (Female1,

Female2), injected with synthetic ACTH, were measured for
immunoreactive fGCMs using five EIAs, namely: cortisol,
corticosterone, 11-oxoetiocholanolone I (measuring 11,17

dioxoandrostanes), 11-oxoaetiocholanalone II (detecting fGCMs
with a 5b-3a-ol-11-one structure), and 5a-pregnane-3b,11b,21-
triol-20-one (measuring 3b,11b-diol-CM). The choice of enzyme
immunoassays included assays that were specifically designed to

target cortisol or corticosterone, but also widely used group spe-
cific assays (Palme 2019). The number of individuals that we used
for the evaluation of a suitable EIA has been based on previous

studies that have successfully validated assays by using between
2 to 4 individuals (Wielebnowski et al. 2002 (N¼ 4); Fichtel et al.

2007 (N ¼ 4); Laver et al. 2012 (N ¼ 2); Young et al.

2017 (N¼ 4); Scheun et al. 2018 (N¼ 3)). Details of the fiveEIAs
including cross-reactivities are described by Palme and Möstl
(1997) for 11-oxoetiocholanolone I and cortisol, Möstl et al.

(2002) for 11-oxoaetiocholanalone II, and Touma et al. (2003) for
5a-pregnane-3b,11b,21-triol-20-one and corticosterone. Assay
sensitivity was 0.6 ng/g for cortisol, 11-oxoetiocholanolone I
and 11-oxoaetiocholanalone II, 1.8 ng/g for corticosterone, and

2.4 ng/g for 5a-pregnane-3b,11b,21-triol-20-one EIA. Intra-
assay coefficients of variation, of high- and low-value quality
controls, were 4.17 and 4.67% for cortisol, 6.87 and 8.22% for

corticosterone, 3.05 and 5.71% for 11-oxoetiocholanolone I, 5.27
and 5.76% for 11-oxoaetiocholanalone II and 3.81 and 4.19%
for 5a-pregnane-3b,11b,21-triol-20-one. Inter-assay coefficients

of variation, of high- and low-value quality controls, were 8.11
and 11.68% for cortisol, 13.46 and 16.88% for corticosterone,
1.80 and 6.38% for 11-oxoetiocholanolone I, 5.74 and 11.68% for
11-oxoaetiocholanalone II and 8.22 and 11.36% for 5a-pregnane-
3b,11b,21-triol-20-one.

Data analysis

Choice of enzyme immunoassay

To determine EIA suitability, individual baseline and peak

fGCM concentrations were identified for each of the EIAs tested,
using a subset of samples collected two days prior and following
ACTH administration. Individual baseline fGCM concentration

was determined for the respective datasets, using an iterative
process (Brown et al. 1994; Scheun et al. 2016). Here, the mean
and standard deviation (s.d.) value for each individual was
calculated. Subsequently, all data points higher than the

meanþ 1.5 s.d. were removed and themean and s.d. recalculated.
This process was repeated until no value exceeded the
mean þ 1.5 s.d., thus yielding the individual baseline value. To

determine the effect of a stressor (ACTH/Separation) on the HPA
axis, the absolute fGCM change was determined, defined as
percentage fGCM response, by calculating the quotient of base-

line and fGCM samples. An average increase of $100% was
considered a significant rise in fGCM levels (e.g. Young et al.

2017; Jepsen et al. 2019). To identify the most suitable EIA, we

then chose the commonlyused approach to select theEIAwith the
highest percentage increase for all individuals (e.g. Ludwig et al.
2013; Young et al. 2017, and see Touma and Palme 2005 for a list
of studies). The cortisol EIA showed the largest peak fGCM

response of the five EIAs tested, exceeding the 100% average
response (range: 100–2155.30%, Table 1) post-injection for the
four study animals (Fig. 1). The lack of a response in one study

animal (Female2) is not uncommon during a physiological
validation via ACTH administration (see Touma and Palme
2005), and does not lower the reliability of the assay. Subse-

quently, the cortisol EIAwas used to assess fGCMconcentrations
in the samples from the remaining four ACTH administered
individuals, as well as in the samples linked to separation from
all eight animals. However, we note that despite the lack of an

average increase exceeding 100%, the corticosterone assay pro-
duced fGCM responses that were comparable between the four
individuals, which is another favourable indicator for assay

suitability, and as such, the tested corticosterone EIA may also
be suitable to monitor fGCM in sugar gliders. For the assay of
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choice (cortisol EIA), serial dilutions of extracted samples gave

displacements curves, which were parallel to the respective
standard curves (the relative variation of the slopes of the trend
lineswas,5%). Faecal glucocorticoidmetabolite concentrations

are given as mg/g dry weight (DW). All EIAs used throughout the
study were performed on microtiter plates as described by
Ganswindt et al. (2012).

ACTH administration and separation

After deciding on an appropriate EIA for monitoring fGCM
concentrations in the sugar glider, the entire sample set was

analysed using the cortisol EIA. Individual baseline fGCM
concentration was calculated from the entire dataset using the
iterative process as described above. The production of GCs
from the adrenal gland can fluctuate daily (Peter et al. 1978;

Lincoln et al. 1982). In order to determine whether natural daily
fluctuations are apparent in sugar gliders, fGCM concentrations
from the unmanipulated period preceding the ACTH injection

were compared to the calculated baseline value (as above) for
each individual. The deviation from the calculated baseline level
was expressed as a percentage deviation value and ranged from

14–29% (Table 2). Thus, daily variation in fGCM excretion is
negligible for sugar gliders.

Results

ACTH challenge

Seven of the eight animals exhibited a pronounced increase in

fGCM concentrations, following ACTH administration, when
using the cortisol EIA (range: 69–1566%, Table 2). Both adult
males as well as the subadult male showed a considerable

increase in fGCM response (206–1566%) 4.5–8 h following
ACTH administration (Table 2). The fGCM concentrations
returned to baseline levels for all three individuals between 6.5

and 25 h following ACTH administration (Table 2). Four of the
five females injected with ACTH showed an increase in fGCM
response (69–1290%) 1.5 to 10.5 h following ACTH adminis-
tration (2–6 samples post-injection, Table 2). The fGCM con-

centrations of all four females returned to baseline levels
between 6.5 and 49 h followingACTH administration (Table 2).

Biological validation via separation

Six of the eight individuals showed a considerable increase in

fGCM response after separation (range: 62–2413%, Table 2;
Fig. 2), but two females did not show an acute fGCM response
above 50% (Table 2). Both adult males, the subadult male and

two adult females showed a peak fGCM response between the
first and third collected faecal sample post-separation, with
fGCM concentrations returning to baseline levels on the sub-

sequently collected sample for each individual. Additionally,
one adult female showed a prolonged, elevated fGCM response
following the separation event, with the fGCM response
exceeding 125% from the first to the fifth collected faecal

sample before returning to baseline level.
The fGCM response to the separation event was considerably

stronger than the response determined following ACTH admin-

istration in sugar gliders (Table 2: not statistically tested due to
small and inhomogeneous sample size).
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Discussion

Our study shows that fGCM changes induced by both physio-
logical stimulation (ACTH) and a behavioural event
(separation) can be reliably monitored in faecal samples from
sugar gliders using a cortisol EIA. In addition to confirming the

ability to non-invasively monitor stress responses in sugar gli-
ders using faecal samples, the measured response to separation
further proves the ability of the chosen assay for monitoring

biological relevant changes in the stress response.

Sugar gliders are a highly social species, commonly found

nesting together throughout the year (Suckling 1984) even

though energy savings achieved via torpor expression during

winter can be reduced by the presence of normothermic nest

mates (Nowack andGeiser 2016). In fact, sugar glider groups are

quite stable and although groups occasionally split up when

changing nests, they usually re-join after a few days (Körtner

and Geiser 2000). Separation of individuals of a highly social

species such as sugar gliders can result in the increased
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Fig. 1. Relative change (%) of faecal glucocorticoid metabolites (fGCMs) following ACTH administration

observed in two male (a, b) and two female (c, d) sugar gliders using five different enzyme immunoassays.
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production of GCs and shift the HPA response into the ‘reactive
homeostasis range’ in order to facilitate physiological and

behavioural changes that promote a return to homeostasis. A
similar response has also been shown for several other social
species, such as the domestic guinea-pig (Cavia porcellus,

Hennessy et al. 2008), pied babbler (Turdoides bicolor, Jepsen
et al. 2019), African buffalo (Syncerus caffer, Ganswindt et al.

2012), the common prairie vole (Microtus ochrogaster, Ruscio
et al. 2007), the common squirrel monkey (Saimiri sciureus,

Hennessy et al. 1982) and the black tufted-ear marmoset
(Callithrix kuhlii, Smith and French 1997).

The time lag between elevated circulating GCs from ACTH

administration to the excretion of GCs in sugar glider faeces was
around 4–6 h post-injection. This is similar to other small-bodied

Table 2. Time and intensity of peak faecal glucocorticoid metabolites (fGCM) response for each of the eight study animals following ACTH

administration and a separation event

Individual sample numbers are given (N) as well as total numbers of males and females monitored

Sex Deviation from baseline

unmanipulated period (%)

Time to peak response post

ACTH administration (h)

Peak fGCM response after

ACTH injection (%)

Peak fGCM response after

separation (%)

Subadult male 20 6.50 (N¼ 2) 206 168

Adult male1 19 4.5 (N¼ 3) 497 1248

Adult male2 19 8.0 (N¼ 3) 1566 2413

Mean� s.d. 19� 1 (n¼ 3) 6.3� 1.8 (n¼ 3) 756� 716 (n¼ 3) 1276� 1123 (n¼ 3)

Female1 23 1.5 (N¼ 1) 91 1655

Female2 29 4.0 (N¼ 2) 32 �17

Female3 18 10.5 (N¼ 5) 69 2090

Female4 14 4.0 (N¼ 2) 1290 26

Female5 25 2.0 (N¼ 2) 681 862

Mean� s.d. 22� 6 (n¼ 5) 4.4� 3.6 (n¼ 5) 433� 549 (n¼ 5) 923� 947 (n¼ 5)
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mammals, such as the degu (6 h, Octodon degus, Soto-Gamboa

et al. 2009), mice (8–10 h,Mus musculus f. domesticus, Touma
et al. 2004), African lesser bushbaby (14 h, Galago moholi,
Scheun et al. 2015) and eastern chipmunks (8 h, Tamias striatus,

Montiglio et al. 2012). However, following both biological and
physiological stressors, a considerable amount of individual
variability for the tested males and females have been observed
in terms of peak fGCM response, time to peak response, and

return to fGCM baseline levels. The time span from injection of
ACTH to the observed peak response varied by up to 8.5 h
between individuals. Furthermore, only three of five female

individuals showed an increase in fGCM levels in response to
the separation event. Our data also suggest differences between
the sexes, as males had a considerably higher average fGCM

response to both ACTH administration and handling compared
with their female counterparts. Although biological stressors
(e.g. animal handling, separation, constraint, blood collection,
transportation and/or agonistic interactions; Goymann et al.

1999; Bosson et al. 2009; Rimbach et al. 2013) have been used
successfully in several validation studies to increase GC produc-
tion (Touma and Palme 2005), numerous instances exist where

individual variation in the stress response to biological validation
has led to inconsistent validation results. The ability of an event
to act as a stressor and activate the stress response is based on

individual perception; that is, specific biological stressors may
not be recognised as such by an individual (Reeder and Kramer
2005). Furthermore, individual and sex-related variations in the

stress response can also be caused by the time of year, reproduc-
tive status, body condition and the animal’s developmental
history (Yoshimura et al. 2003; Kudielka and Kirschbaum
2005; Cockrem 2013). Individual variation in response to a

stressor has been reported in several studies. For example,
Smith et al. (2012) showed that the stress response to capture
in yellow-bellied marmots (Marmota flavivetris) were specific

to individuals, with several individuals failing to show a signifi-
cant fGCM increase. Similarly, dwarf hamsters (Phodopus
campbelli) exposed to a subordinate ‘on-back’ position showed

a large degree of individual variation, ranging from a large to
no response (Guimont and Wynne-Edwards 2006), whereas
Narayan et al. (2012) showed that greater bilby (Macrotis

lagotis) held in captivity displayed individual variation in the
stress response to anthropogenic activities.

Although both physiological and biological validation tech-
niques were largely successful in this study, both can have

shortcomings. The injection of ACTH can lead to the overstim-
ulation of the adrenal gland, resulting in a less sensitive EIA
being chosen as an ideal assay for fGCMmonitoring in a species

(Young et al. 2017). In contrast to this, the response to a
biological stressor is individual specific and may result in the
under stimulation of the adrenal gland (Koolhaas et al. 2007). As

such we agree with previous researchers that, when possible,
both a physiological and biological validation should be con-
ducted to ensure the most appropriate EIA is chosen for
monitoring fGCM patterns in a particular species.

Being able to use fGCM to non-invasively assess the physio-
logical state of sugar gliders will be beneficial to determine the
health status of sugar glider populations and may be especially

useful to investigate the impact of anthropogenic disturbance
and climate change on this species. A study on the closely related

squirrel gliders showed that reduced availability of nesting sites

in highly fragmented habitats leads to elevated cortisol levels,
i.e. a homeostatic overload, in squirrel gliders (Brearley et al.

2012); the study utilised hair as a sample matrix for monitoring

GC metabolites, which gives a seasonal GC metabolite pattern.
In contrast to the seasonal patterns observed in hair, the use of
fGCM monitoring, as used in our study, can give a more acute
(1 h to 2 days) description of the adrenal activity of a species or

population, allowing for an almost real-time assessment of
physiological stress experienced in a population. This will
provide conservationists and researchers with an accurate,

real-time pattern of the physiological stress experienced by
populations within altered habitats, leading to the development
of more robust conservation programs.

Conclusion

Results from the present study have confirmed the ability to

monitor biologically relevant changes in the adrenal function of
sugar glider, using faeces as a matrix. The aim of this study was
to determine the suitability of the tested EIAs for monitoring

fGCM concentrations in the sugar glider; in this regard, only the
cortisol assay showed an overall response exceeding 100% of
the calculated baseline level and seems to be the most suited out

of the five EIAs tested. This validated technique can now be
employed to determine the physiological stress experienced by
free-ranging populations faced with a range of natural and

anthropogenic stressors.
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