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Abstract 
 

When a biological invader is identified in an aquatic ecosystem rapid response is 
critical; particularly if the invasive organism has the ability to spread rapidly. The 
first response should be an attempt to contain the invasion while further information 
is gathered to evaluate whether eradication is feasible. Two aspects of the eradication 
v. containment decision are studied in this paper. First, the question of when it is 
optimal to eradicate an invasion is answered by developing and using a stochastic 
dynamic programming model based on a simple biological spread function. Second, 
the question of the best control options to be used in an eradication or containment 
program is related to the demographic characteristics of the invading organism, based 
on a stage-matrix population model. The sort of information required to calibrate the 
decision model for a specific invader is also discussed. 
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Introduction 

Biological invasions are “the uncontrolled spread and proliferation of species… from 
their native geographic ranges to new ranges” (NRC, 2002: p. 14). These invasions 
are a global problem and, as well as causing considerable costs, their impact is a 
major component of global change. In some areas biological invasions represent 
major threats to ecosystems through mechanisms such as reductions in biodiversity 
and productivity and modification of habitat structure (Bax et al., 2001). In aquatic 
ecosystems this may in turn affect fisheries, tourism and other industries. 

Three management technologies are generally employed to control pests: mechanical, 
chemical and biological (including habitat restoration). According to McEnnulty et al. 
(2000), one of the main constraints to eradication of invaders from aquatic ecosystems 
is the lack of highly specific control techniques. This means that early and accurate 
recognition of the pest is extremely important. Aquatic organisms are generally more 
difficult to control than terrestrial organisms because control techniques tend to be 
difficult to apply directly to the target species; thus significant collateral damage often 
arises from controlling aquatic invaders. McEnnulty et al (2000) discuss the case of 
Darwin Harbour in Australia, where Mytilopsis sp. was eradicated using chlorine and 
copper sulphate in three locked marinas. This resulted in high non-specific damage 
(everything was killed), but the authors argue that the potential cost of the invasion 
would have been much higher if left uncontrolled. For some benthic organisms such 
as molluscs, removal of adults (a mechanical methods) is feasible and may cause low 
collateral damages, but this methods is also labor intensive and therefore expensive.      

Given the threats posed by exotic organisms, common sense dictates that when an 
invasion is discovered an attempt should be made to contain it immediately, to the 
extent possible, while assessing whether eradication is feasible. This requires rapid-
assessment decision tools. Bioeconomic techniques provide an ideal infrastructure to 
develop these decision models. Bioeconomics is a theory of optimal management of 
renewable biological resources (Sharov and Liebhold, 1998) which has traditionally 
been applied in fisheries and aquaculture (eg. Clark, 1976, 1984; Allen at al. 1984, 
Cacho 1997 and references therein).  

This paper deals with two aspects of the problem of managing biological invasions. 
First, the question of when it is optimal to eradicate an invasion is answered by 
developing and using a stochastic dynamic programming model based on a simple 
biological-spread function. Second, the question of the best control options to be used 
in an eradication or containment program is related to the demographic characteristics 
of the invading organism, based on a stage-matrix population model. The advantage 
of this approach is that it is possible to evaluate the effects of control options that 
target specific life stages; hence the method provides flexibility in the evaluation of 
alternative combinations of control options. The sort of information required to 
calibrate the decision model for a specific invader is discussed in the final section of 
the paper.  
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A model to evaluate the eradication decision 
The model developed in this section  is an implementation of the ideas presented by 
Olson and Roy (2002). The objective is to develop a model as simple as possible that 
captures the key features of a biological invasion and its management. There are three 
key variables that drive the invasion-control system: (i) the size of the invasion (yt), (ii) 
the reduction in area invaded (ut) achieved through control methods, and (iii) the size 
of the invasion after control is applied (xt). Below, these three variables are measured 
in terms of area (ha), but they could also be expressed in terms of invasion density per 
unit area. The key variables are related to each other through three functions: the 
growth function, (∆yt), the control-cost function (C(ut)) and the damage function 
(D(xt)).              

The optimal control strategy is determined by solving the dynamic programming 
model: 

( )( )1)()(min)( +⋅++= tttut yVxDuCyV
t

δ  (1) 

subject to: 

( )ρtttt xyxy ∆+=+1  (2) 

ttt uyx −=  (3) 

Equation (1) is a recursive equation that finds the control strategy required to 
minimize the total cost of the invasion, in present value terms. The total cost includes 
the cost of control (C), the cost of damage (D) and the future cost of the uncontrolled 
invasion (V(yt+1)). The future cost is discounted using the factor δ = 1/(1+i) for the 
discount rate i. The optimisation is subject to the population dynamics of the invader 
(2) and to the effect of control on the spread of the invasion (3). The spread function 
is represented in equation (2) as ∆yt(xt). The variable ρ represents a random 
environmental disturbance (0<ρ<∞), which may cause actual spread to be larger or 
smaller than its expected value.   

In the pest-control literature it is common to maximise the net benefits of control, 
where benefits are expressed as the damage avoided by slowing down or eliminating 
the invasion. The model in equations (1) to (3) is exactly equivalent to one that 
maximizes net benefits, but it is more compact because damage is expressed as a 
component of the cost to be minimised. Note that the control cost (C) is a function of 
the amount of control applied (ut), whereas damage (D) is a function of the size of the 
invasion after control has been applied (xt).   

In essence, equation (1) represents the present value of the cost of the invasion, which 
includes current control costs + current damage + discounted future costs of the 
remaining invasion. Control costs include not only normal costs such as labor and 
chemicals, but also the cost of damaging the environment and killing non-target 
organisms when control is applied. Recursive solution of equations (1), (2) and (3) 
leads to an optimal decision rule that can indicates the conditions under which 
eradication is optimal.  



5 

To obtain a model that can be solved numerically, specific functional forms need to 
be defined for the three key functions. The spread (growth) function can be 
conveniently represented by the logistic equation: 

 



 −=∆

κ
α t

tt
xxy 1  (4) 

and the simplest representation of the cost and damage functions is a liner function: 

tCt uuC β=)(  (5) 

tDt xxD β=)(  (6) 

In these equations Greek letters represent parameters to be estimated for the particular 
invasion. The working hypothesis is that all four parameters (κ, α, βC and βD) are > 0. 
The implication of this hypothesis is that the invasion will eventually cover the entire 
area at risk if no control is applied. Definitions of the four parameters and their values 
are presented in Table 1. For simplicity it was assumed that the area at risk is 100 ha, 
so results can also be interpreted as percentages. 

[TABLE 1 HERE] 

The switching point 
Inserting equations (4) to (6) into equations (1) and (2) and solving the dynamic 
model results in an optimal decision rule (optimal control). The optimal decision rule 
indicates the level of control (ut) that should be applied for any given invasion size 
(yt). Associated with the optimal control is the optimal state transition yt → yt+1 which 
indicates whether the invasion increases (yt < yt+1), decreases (yt > yt+1) or remains 
stable (yt = yt+1) when subject to the optimal control. The optimal state transition 
should be interpreted by comparing it to a 450 ‘reference’ line (Figure 1), representing 
the steady state (where yt = yt+1).  

Figure 1 illustrates a convenient way of exploring the dynamics of the optimization 
system and identifying equilibrium points. If the optimal state transition lies below the 
reference line (dotted line in Figure 1) it is optimal to decrease the size of the invasion. 
Conversely, if the optimal state transition lies above the reference line it is optimal to 
allow the population to increase. The point at which the reference line is intersected 
from below (point a in Figure 1), indicates the ‘critical’ size of the invasion; to the left 
of point a eradication is optimal, to the right of point a it is optimal to allow the 
invasion to grow. Hereafter the critical point (a) is referred to as the switching point. 
The switching point occurs where the marginal cost of control equals the marginal 
cost of damage, with both costs measured in perpetuity and expressed in present-value 
terms. 

[FIGURE 1 HERE] 

The optimal state transition can be used to derive an optimal state path, which 
indicates the trajectory of the invasion through time under optimal control (Figure 2). 
In this example, with the assumed parameter values illustrated in Figure 1, an 
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invasion under 55 ha should be eradicated within 8 years, whereas an invasion over 
55 ha should be allowed to run its course. The switching point and optimal paths 
depend on a number of assumptions, including the values of the four parameters 
(Table 1) and the discount rate (i). So it is important to undertake sensitivity analysis. 

[FIGURE 2 HERE] 

A value of α = 0.2 implies a slow-spreading invasion, whereby the whole area at risk 
is invaded within 50 years. Table 2 presents the switching points estimated for this 
invasion under a range of cost and damage values. For any given control cost, 
increasing damage causes the switching point to increase from zero to 100. For 
example if the control cost is $160/ha and damage is $4/ha, it is always optimal to do 
nothing (the switching point is zero), but if damage is $5/ha, it is optimal to eradicate 
invasions up to 32 ha in size.  

[TABLE 2 HERE] 

A value of α = 0.5 implies a fast-spreading invasion, whereby the whole area at risk is 
invaded within 20 years. Under this assumption (Table 3) the results are similar to 
those discussed above in the sense that for any given control cost a higher damage 
parameter will result in a higher switching point. However, with a fast-spreading 
invasion, combinations of high control cost and low damage cost result in values of 
the switching point that are > 0, this is in contrast to values of zero for the slow-
spreading invasion. For example, with a control cost of $240 and a damage of $4, the 
switching point is 0 ha for the slow invasion (Table 2), but it is 17 ha for the fast 
invasion (Table 3). This indicates that there is more pressure to reduce the fast 
invasion early on to avoid damage costs in the near future.  

 [TABLE 3 HERE] 

The interaction between the invasion speed and damage costs when control costs are 
high ($240/ha) is further illustrated in Figure 3. At low damage cost the switching 
point for the fast invasion is greater than for the slow invasion; but at high damage 
cost the pattern reverses and the switching point is lower for the fast invasion. This 
implies that, when the control costs are high, a fast-spreading invasion discovered 
when it is fairly advanced (towards the right in Figure 3) is not worth controlling to 
the same extent as a slow invasion. These results also indicate that, for the fast 
invasion in its early stages (towards the left in Figure 3), the marginal cost of damage 
(in present-value terms) is higher than the marginal cost of control, and therefore it is 
optimal to eradicate invasions with damage costs as low as $4/ha.  

[FIGURE 3 HERE] 

An important question arising from the foregoing analysis is whether invasions can be 
characterized in terms of the four parameters: κ, α, βC, and βD. This is arguably the 
simplest possible description of the decision problem. As seen above, α determines 
the speed of spread, and slower invasions are only worth eradicating if the damage is 
high or the cost of control is low.  

A common way of calculating the cost of controlling an invasion is to multiply the 
cost per ha (i.e. cost of labor and chemicals) times the area to be treated. This implies 
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that the cost function is linear as expressed in equation (5). Similarly, damage is often 
calculated by multiplying the loss in the value of outputs per hectare caused by the 
pest times the total area invaded. This implies a linear damage function, as 
represented in equation (6). These assumptions are reasonable in some cases but may 
not be realistic for natural environments that have scarcity value. In these cases as the 
pristine area decreases the remaining un-invaded area may have a higher value per 
unit area, which would imply a damage function that increases at an increasing rate as 
the area invaded increases. 

Life stages and control options 
The model developed above provides a simple and convenient decision tool, but it 
abstracts away from important questions. The control variable (ut) is expressed in 
terms of reductions in the area invaded. This says nothing about the techniques that 
should be used to control the invasion or the life-stages of the population that should 
be targeted. Matrix population models can help in this regard. Matrix models are a 
useful tool for investigating population dynamics (Caswell, 2001), they provide a 
convenient way of integrating demographic information regarding the different life-
stages of an organism. Consider the life cycle of a hypothetical marine organism 
illustrated in Figure 4. 

[FIGURE 4 HERE] 

This particular organism has four distinctive life stages: egg, larva, juvenile and adult. 
Adults produce eggs according to their level of fecundity (F4), a proportion of eggs 
(P1) hatch into larvae, a proportion of these larvae (P2) survive into juveniles, and a 
proportion of juveniles (P3) survive into adults. The cycle is completed with the 
proportion of existing adults (P4) that survive into the next time period. Given the 
demographic (survival and fecundity) parameters P1, P2, P3, P4 and F4, the spread of 
this organism can be studied by creating a projection matrix. The structure of the 
projection matrix depends on the time step used to represent the population dynamics 
relative to the duration of the various life stages. If the time step is long enough to 
allow newly-laid eggs to hatch into larvae within a time period, we can represent the 
population as consisting of only three stages: larvae, juveniles and adults. The 
projection matrix is: 















 ×
=

43

2

14

0
00

00

PP
P

PF
A              (7) 

Where the first row and column represent larvae, the second row and column 
represent juveniles and the third row and column represent adults. Columns can be 
interpreted as ‘from’ and rows as ‘to’, so the parameter in row 2 and column 1 (P2) is 
the proportion of larvae (stage 1) that survive into juveniles (stage 2). The structure of 
the population at any time t is described by vector xt, which contains the number of 
individuals in each stage of the life cycle:  
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








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




=

t

t

t

t

x
x
x

3

2

1

x           (8) 

where x1t is the number of larvae, x2t is the number of juveniles and x3t is the number 
of adults at time t. Population growth and changes in population structure are 
calculated by performing the matrix multiplication: 

xt+1 = A xt (9) 

Applying equation (9) recursively for any initial population x0, will result in 
exponential growth. The long-term dynamics of the population are described by the 
population growth rate (λ), which is related to the intrinsic rate of increase r asλ =er. 
This means that, to contain the invasion we must reduce λ to 1.0 (r = 0), and to 
eventually eradicate the invasion we must reduce λ to a value less than 1.0 (r < 0). 
The growth rate, however, is affected by the demographic parameters in A, and these 
effects are not uniform. The effects of demographic parameters on λ are measured by 
the elasticity matrix:  












∂
∂

=
ij

ij

a
a λ
λ

E  (10) 

To estimate λ, it is necessary to estimate the dominant eigenvalue of the A, Caswell 
(2001, pp. 107-108) shows how to perform this operation numerically. 

As an example, consider a hypothetical invasive organism with the following 
projection matrix: 
















=

80.020.001.0
040.008.0

20000
A       (11) 

This means that adults produce 200 live larvae (A1,3) on average, there is an 8 percent 
probability that a larva will become a juvenile (A2,1), a 1 percent probability that an 
early-maturing larvae will become an adult (A3,1), a 20 percent probability that a 
juvenile will survive into an adult (A3,2) and so on. The growth rate (λ) of this matrix 
is 2.35 > 1, this value is > 1, implying that the population will continue to increase if 
left unchecked. To control the invasion it is necessary to make λ ≤ 1, and this can be 
achieved by targeting one or more life stages. The elasticity matrix corresponding to 
A in (11) is: 
















=

17.015.018.0
003.015.0
33.000

E       (12) 

These elasticity values indicate that the most effective control option would be one 
that targets fecundity (E1,3 = 0.33), followed by options that target adult survival 
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(elasticities in row 3 range between 0.15 and 0.17). However, the most effective 
option is not necessarily the most efficient from an economic standpoint. Targeting 
fecundity may not be a viable option for the particular species in the particular 
environment being considered. For example, attempting to kill larvae by applying a 
chemical that will also kill coral may be unacceptable in a protected area, and the only 
option left may be the physical removal of adults (i.e. target E3,3). 

Information Needs 
The control-cost function should be fairly easy to estimate, although the data are 
seldom readily available for existing eradication programs. The components of the 
cost function would be travel, labor, chemicals and equipment expenses. If other 
(non-target) organisms are also affected by the control technique, then the control-cost 
function should include these additional costs (i.e. reduced fish catches, reduced 
recreation).  

Estimating the damage function is generally more difficult than estimating the cost 
function. Fortunately, sensitivity analysis results can answer questions such as: “For 
the given cost of control, what would be the minimum damage that would make it 
optimal to eradicate the invasion?” In Tables 2 and 3 this question may be answered 
by selecting the relevant control-cost column and moving down to find the switching 
point corresponding to the current invasion size. The “break-even” damage can then 
be read off the appropriate row. For example, assume a fast invasion with control cost 
of $160/ha and a size of 50 ha when discovered; referring to the 4th column in Table 3 
indicates that a switching point of 50 ha occurs when damage is $7.50/ha, this is the 
break-even damage value for this invasion. This method eliminates the need for full 
biodiversity valuations to make pest-control decisions in natural ecosystems. However, 
it would still be necessary to place a lower bound on the value of the ecosystem under 
threat.  

Linear cost and damage functions were assumed for simplicity in this example, but 
other functional forms may be more appropriate, this is an empirical question and the 
answer is likely to vary between cases. 

The information required to estimate the spread function parameters may not be 
readily available for a particular species, but it should be possible to obtain rough 
estimates of the area at risk (κ) and the growth rate (α) from past experience, expert 
opinion and climate-matching. Furthermore, the exponential section of the spread 
function (4) can be estimated by solving the matrix model using equation (9).  

In order to apply the elasticity matrix to the control decision it is necessary to know 
something about the cost of achieving a given reduction in the various demographic 
parameters, which in turn requires knowledge of the technologies available and their 
costs. This link is not made here, but the reader is referred to an example presented by 
Buhle et al. for an oyster drill (Ocinebrellus inornatus) invasion. 
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Summary and Conclusions 
Biological invasions can be very costly and, when they occur in aquatic ecosystems, 
they are particularly difficult to control. Therefore it is important to have rapid-
assessment decision tools. Such a tool is developed in this paper, in the form of a 
model that requires four parameters that represent the area at risk, the speed of spread, 
the cost of control and the cost of damage. Solution of the model for any given set of 
parameters yields a ‘switching point’: the critical size of the invasion below which it 
is optimal to attempt eradication. 

Given the difficulty of estimating the cost of damage, particularly in natural 
environments, the paper shows how to perform sensitivity analysis to estimate the 
‘breakeven damage’ that would make an eradication effort economically efficient. 
Thus avoiding the need to estimate a detailed damage function that may require 
calculation of biodiversity and other environmental values. 

A weakness of the switching-point model is that the linkage between the level of 
control applied and its cost is abstract. Control is expressed in terms of invasion-area 
reduced, which gives no indication of the inputs required, the control techniques 
applied and the life stages targeted. This deficiency can be overcome by designing a 
matrix model based on demographic parameters that represent fecundity and survival 
of different life stages. In the tradition of fisheries bioeconomics, the model developed 
here was designed to be as simple as possible while capturing the essential biological 
and economic features of the problem. This makes the model amenable to empirical 
application and testing.   
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Table 1. Parameter definitions and values tested in this study 

Symbol Values Definition 
κ 100 area at risk (ha) 
α 0.2, 0.5 intrinsic rate of spread (1/yr) 
βC 80-300 cost of control ($/ha)  
βD 3-25 cost of damage ($/ha) 
i 0.06 discount rate 
 

 

Table 2. Switching points (ha)a for a slow invasion with cost and damage functions 
assumed linear (α=0.2, βC and βD vary). 

Damage Control cost, βC ($/ha) 
βD ($/ha) 80 120 160 200 240 

3 44 0 0 0 0 
4 64 38 0 0 0 
5 85 50 32 0 0 

7.5 100 85 59 44 32 
10 100 100 85 64 50 
15 100 100 100 100 85 
20 100 100 100 100 100 

 

a a value of 0 means eradication is never optimal, 100 means eradication is always 
optimal, other values indicate the maximum invasion size that should be eradicated.  
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Table 3. Switching points (ha)a for a fast invasion with cost and damage functions 
assumed linear (α=0.5, βC and βD vary). 

Damage Control cost, βC ($/ha) 
βD 

($/ha) 80 120 160 200 240 300 
3 42 27 21 16 11 7 
4 52 38 27 23 17 13 
5 62 45 36 27 23 17 

7.5 87 62 50 42 36 27 
10 100 78 62 52 45 38 
15 100 100 87 71 62 52 
20 100 100 100 94 78 65 
25 100 100 100 100 99 78 

a a value of 0 means eradication is never optimal, 100 means eradication is always 
optimal, other values indicate the maximum invasion size that should be eradicated.  

 



14 

0

20

40

60

80

100

0 20 40 60 80 100

y t+
1

Area invaded (yt)

a

 

Figure 1. The optimal state transition (solid line) obtained by solving the DP model, a 
represents the switching point. 
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Figure 2. Optimal state paths for a range of starting values based on the optimal state 
transition illustrated in in Figure 1. Point a is the switching point. 
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Figure 3. The effect of the damage parameter (βD) on the value of the switching point 
for two different invasion speeds with a control cost of $240/ha. 
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Figure 4. The life cycle of a hypothetical aquatic organism used as an example. 

 


