Daily torpor and energy savings in a subtropical blossom-bat, Syconycteris australis (Megachiroptera)

Dionne K. Coburn and Fritz Geiser
Department of Zoology, University of New England, Armidale, New South Wales 2351, Australia

Introduction
Torpor is characterised by a substantial reduction of metabolic rate (MR), body temperature (T_b) and other physiological functions. In hibernating species, T_b may drop close to or even below 0°C (Barnes 1989; Lyman 1982) and MR may fall as low as 1% of the basal metabolic rate (BMR) (Geiser & Ruf 1995). However, torpor does not always involve such a dramatic change in metabolism and T_b. Shallow daily torpor lasts only for several hours and the drop of MR and T_b during this form of torpor is less pronounced than during hibernation. The T_b is usually between 11 and 28°C and MR is reduced to about 30% of BMR, although this is quite variable (Hudson 1973; Geiser & Ruf 1995).

Both hibernation and daily torpor have been well studied in insectivorous bats of the suborder Microchiroptera. In contrast, very little is known about heterothermy in bats of the suborder Megachiroptera (‘fruit bats’). In the past it was widely believed that megachiropterans were strictly homeothermic (Ransome 1990). However, there is some evidence that some small species of the Megachiroptera are heterothermic (Bartholomew et al. 1970) and torpor patterns of the common or Queensland blossom-bat, Syconycteris australis, have been described (Geiser et al. 1996). This species enters torpor when food is withheld, and remains torpid for one to over ten hours. The T_b during torpor is regulated at around 18°C and the MR during torpor falls to approximately 10% of that observed during resting (Coburn 1995; Geiser et al. 1996). While the torpor patterns of Syconycteris australis are well known, the extent of energy that is saved by the use of daily torpor has not been determined. Such information can provide some insight into energy restrictions on this species within its natural range and the relative importance of these restrictions in controlling the distribution of Syconycteris australis in Australia.

Material and Methods
Nine adult male Syconycteris australis were captured with mist nets near Iluka on the NSW north coast, at the mouth of the Clarence River (29°13'S, 153°21'E) in both summer (February) and winter (June). Body mass of bats upon capture was 18.0±1.1g (SD) in summer, and 17.5±1.0g (SD) in winter. Upon arrival at the University of New England, bats were released into a large holding room which provided ample room for the bats to fly. The room was fitted with branches and wide plastic mesh for roosting and for providing access to feeders. Air temperature (T_a) was maintained at 20±1°C and relative humidity
above 40%. Photoperiod was set at the natural photoperiod of the time of capture which was 13L:11D (lights on 0530h, lights off 1830h) in summer and 10L:14D (lights on 0700h, lights off 1700h) in winter. These settings were maintained for the duration of the experiment.

Bats were fed daily on a blended mixture of 200mL apple juice, 2 bananas, 150g raw sugar, 150g ‘Glucodin’ and 120g ‘Infasoy’ provided in ten 30mL feeders. Single portions were defrosted daily and diluted by half with water. Water was provided ad libitum in bird feeders and shallow dishes.

The MR was measured as rate of oxygen consumption. Daily fluctuation of MR was measured over a minimum of 22 hours each, usually beginning around 1500 to 1600h, set to T_b 12°C, 18°C and 25°C for both summer and winter samples. Food and water were not available during these measurements. Photoperiod during all measurements was as experienced in the holding room. Measurements were conducted in 12 respirator chambers fitted with wide plastic mesh for roosting. Flow rates (approx. 360mL min⁻¹) were adjusted by rotameters and measured by Omega FMA 5606 mass flowmeters. Chambers were placed in a temperature-controlled cabinet (±0.5°C). The T_b within each of the chambers was monitored with calibrated thermocouples, and read by an Omega digital thermometer (to nearest 0.1°C). T_a was measured with an implanted thermistor (Mini-Mitter Model X-M, ±1°C accuracy) (for details, see Geiser et al. 1996). External noise was kept to a minimum during all measurements. Bats were weighed before and after all measurements and a linear decrease in body mass was assumed for calculation of mass-specific metabolic rates. Oxygen consumption was measured with Amereck Applied Electrochemistry S-3A oxygen analysers as described (Geiser et al. 1996).

Results of these measurements were used to calculate MR of torpid animals (TMR) and resting metabolic rate (RMR) over 36 minutes. RMR was calculated from the lowest steady-state oxygen consumption values in resting, normothermic bats below the thermoneutral zone (TNZ). TMR was determined by selecting the lowest steady-state MR of torpid bats. The energetic cost of torpor was calculated as the average energetic cost of a torpor bout including cost of arousal. This was calculated from the time when MR fell below RMR during entry, to the end of the arousal overshoot. The equivalent cost of resting was calculated as the mean RMR of the same individual during the same measurement. The average cost of torpor was expressed as a percentage of the average cost of RMR over the same time period. Torpor bout length was defined as the time period between MR falling below 75% RMR during torpor entry, and MR returning to 75% RMR during arousal. Average daily metabolic rate (ADMR) was calculated as the mean of all measurements recorded for any one individual over a 22 to 24 hour period.

Linear regressions were performed using the method of least squares. Similarities or differences between seasons were tested by comparing regression lines using analysis of covariance (ANCOVA). Comparison of means between both season and T_a were analysed using two-way analysis of variance (General Linear Model — method designed for unbalanced data), referred to in the text as ANOVA. Tests were performed using ‘Minitab 9.0’. Levels of significance were set at p<0.05 for all tests. All means are presented plus or minus the standard error of the mean (SEM). Sample sizes are denoted as n = number of individuals.

Results
The MR and T_a of Syconectris australis showed pronounced daily fluctuations (Fig. 1). In all cases activity began after lights out and continued throughout the dark phase. This active phase was characterised by considerable fluctuations in metabolic rate and a relatively steady T_a of around 35°C. immediately after lights on, three patterns of MR and T_a fluctuations were observed. The most frequent of these is shown in Fig. 1A, in which the bat showed a single, uninterrupted torpor bout. The TMR dropped to approximately 10% of RMR, and T_a during torpor approached T_a. Arousal usually occurred in the early afternoon (1300h to 1500h).

In 18% of observations bats did not enter torpor at all, but maintained their MR at a low resting level during daylight hours (Fig. 1B). A third pattern (Fig. 1C) was observed on only four occasions and only in animals collected during summer, where the bat entered torpor and showed several partial arousals throughout the day.

When the metabolic cost of resting at each T_a and season was compared with the cost of torpor, the use of uninterrupted torpor reaped some energetic benefit in all instances. Average reduction of energy expenditure during torpor in comparison to rest in summer were 44.8 ± 2.8% (n=4) at T_a 12°C, 64.3 ± 2.8% (n=7) at T_a 18°C and 45.3 ± 4.2% (n=3) at T_a 25°C. In winter, average reduction of energy expenditure during torpor was 42.4 ± 3.1% (n=5) at T_a 12°C, 54.3 ± 2.4% (n=7) at T_a 18°C and 45.7 ± 7.0% (n=2) at T_a 25°C. The average reduction of energy expenditure during torpor (in comparison to resting) differed significantly between T_a5 (ANOVA, p<0.001) with energy reductions being most pronounced at T_a 18°C. However, no differences between season were detected (ANOVA, p>0.05) (Fig. 2).

Multiple torpor bouts also resulted in a significant energetic benefit (ranging between 41 and 56%) in comparison to rest. These values were very close to the summer means at T_a 12°C and 25°C, suggesting that there is little energetic penalty for the use of multiple torpor bouts in a day.

When bats remained normothermic, MR was maintained at around 75% of RMR measured after arousal and T_a was regulated at around 32°C.

At low T_a, ADMR was influenced by the length of torpor bouts. Increasing torpor bout duration lead to an overall decrease in ADMR (Fig. 3). At T_a 12°C a torpor bout of 10 hours resulted in an ADMR reduction to 74% of that extrapolated to zero hours (absence of torpor). A similar pattern was observed at T_a 18°C; however, at T_a 25°C, ADMR appeared to be little affected by torpor bout length.

Discussion
Daily torpor is extremely effective in reducing energy expenditure in Syconectris australis. All torpor bouts at all T_a resulted in a reduction in energy expenditure. For both summer and winter samples, torpor resulted in maximal average reduction in energy expenditure of 54-64% at T_a 18°C, and although lower values of 42-45% and 45-46% were achieved at T_a 12°C and T_a 25°C respectively, the reduction was still substantial. The more pronounced reduction of energy expenditure at T_a 18°C may be expected, as no extra cost is required for thermoregulation (as at T_a 12°C and MR is not limited by a high T_a at a high T_a (as at T_a 25°C). A similar pattern was found for the rufous hammerhead (Selasphorus rufus), where energy expenditure decreased with a decreasing T_a above the set point for T_a, below which the pattern was reversed as the bird began to defend its T_a (Kenagy 1989)
A reduction of energy expenditure was also observed in bats that remained normothermic throughout the day, but with a low T_b of about 32°C and a MR reduced to approximately 75% of the “normal” RMR. However, a significantly greater amount of energy was saved by employing daily torpor. The reasons as to why individuals may choose to remain at rest rather than entering torpor are unclear.

By looking at the energy that can be saved by entering torpor, even if only on a daily basis, it becomes obvious why torpor is a very successful strategy in overcoming food shortages and the energetic demands of increased thermoregulation during exposure to cold. Reduction of ADMR by the use of torpor in *Suncus etruscus* were similar to that in Djungarian hamsters, *Phodopus sungorus*, the deer mouse, *Peromyscus maniculatus* (Ruf & Heldmaier 1993) and the fat-tailed dunnart, *Sminthopsis crassicaudata* (Holloway & Geiser 1995). However, it is possible that part of the reduction in energy expenditure may be from the reduced level of activity during the night, a scenario which may be applicable to many species, including *S. australis* (Ruf & Heldmaier 1993).

ADMR was found to decrease with increasing torpor bout length (Fig. 3). A longer period of time where the metabolic rate is minimal, as during torpor, would be expected to decrease the overall metabolic rate over a 24 hour period. This effect of torpor on ADMR shows how important the use of torpor can be in helping to reduce overall daily energy expenditure, especially when food resources are scarce or low temperatures require greater heat production for thermoregulation.

Fig. 1. Three patterns of daily fluctuations in T_b and MR at T_a 18°C observed in *S. australis*. Uninterrupted daily torpor (A) was observed most frequently, while low RMR without torpor (B) and multiple torpor bouts (C) were observed occasionally. Dark bars represent period of darkness.

Fig. 2. Percentage reduction of energy expenditure during torpor in comparison to rest in *S. australis* at three ambient temperatures during summer and winter. Values represent means ± SE for n=4 (T_a 12°C), n=7 (T_a 18°C) and n=3 (T_a 25°C) in summer and n=5 (T_a 12°C), n=7 (T_a 18°C) and n=2 (T_a 25°C) during winter.
between the roost and feeding sites may be substantially increased, making the use of
torpor for energy conservation attractive. The alternative of shifting roost positions to
reduce commuting distances may be possible (Law 1993). However, limited areas of
coastal rainforest in recent years may have eliminated this behavioural option, making
the physiological option of torpor a convenient and effective alternative.

Acknowledgments
This research was supported by a grant from the Australian Research Council to F. Geiser.
We would like to thank Brad Law for assistance and advice on various aspects of the
project, Gerhard Körntner and Jo Holloway for proofreading the manuscript and assistance
in the laboratory and Stuart Cairns for statistical advice.

References
Barnes B. (1989) Freezie avoidance in a mammal: body temperatures below 0°C in an arctic
hibernator. Science 244, 1593-1595.
in some of the smaller flying foxes (Megachiroptera) of New Guinea. Z. vergl. Physiologie
70, 196-209.
Holloway J.C. & Geiser F. (1995) Influence of torpor on daily energy expenditure of the dasyurid
Kenyag G.J. (1989) Daily and seasonal use of energy stores in torpor and hibernation. In Living in
Law B.S. (1993) Roosting and foraging ecology of the Queensland blossom-bat (Syconycteris
australis) in north-east New South Wales: flexibility in response to seasonal variation.
Wildl. Res. 20, 419-431.
Law B.S. (1994a) Climatic limitation of the southern distribution of the common blossom-bat
Law B.S. (1994b) Batika nectar and pollen: Dietary items effecting the abundance of the common
blossom-bat, Syconycteris australis in south eastern Australia. Aust. J. Ecol. 19(4),
425-434.
blossom-bat Syconycteris australis in south-east Australia. Oikos 72(1), 42-50.
Lyman C.P. (1952) Who is who among the hibernators. In Hibernation and Torpor in Mammals
and Birds (Edited by Lyman C.P., Willis J.S., Malan A. & Wanj L.C.H.), pp. 12-36, Aca-
demic Press, New York.
Ruf T. & Heldmaier G. (1993) Individual energetic strategies in winter-adapted Dungarian ham-
ters: The relation between daily torpor, locomotion, and food consumption. In Life in the
Cold: Ecological, Physiological, and Molecular Mechanisms (Edited by Carey C., Florant

Syconycteris australis is the only small member of the Australian Megachiroptera
to be found outside tropical climates. The southerly extreme of this distribution falls in
an area that could be considered transitional between subtropical and temperate climates
(Law 1994a). As a result, the southerly distribution of this species is very interesting from
an energetic perspective. Is it possible that the use of torpor by this bat enables it to
save enough energy to cope with the thermoregulatory demands of its southerly
distribution? Of course, this question cannot be resolved here, but requires further
comparative studies with other small megachiropteran species from the tropics.

From the results of this study, however, we may speculate that the range of S.
australis is more likely to be limited by food availability rather than cold exposure. This
is supported firstly by the apparent lack of differences in torpor duration between T25, and
secondly by the fact that no torpor was observed at T1, 18°C when food was available
in excess, while bats readily entered torpor at a T25 of 25°C when food was absent. This
observation supports the argument that bats depending on a diet of nectar, pollen and fruit
appear to be restricted more by food availability than by the energy cost of thermoregulation
(Fenton 1983). Food availability would appear to be a limiting resource for the Syconycteris
australis at the southern end of its distribution (Law 1994b). Indeed, the local abundance of S.
australis showed a positive correlation with the density of food resources, with a
noticeable immigration of individuals to an area of abundant food resources occurring
within only a week (Law 1995). The changes in food availability for S. australis is likely to
have a profound effect on their energy budget. When food is scarce, commuting distance